- 
				相变纤维作为人体热量管理领域的新型功能材料,其应用价值日益凸显。然而,现有研究体系存在显著的局限性:基于湿法纺丝工艺制备的单根相变纤维和静电纺丝技术构建的相变纤维薄膜,因其结构致密性不足导致隔热性能欠佳,难以有效阻遏寒冷环境下的体温散失。针对这一技术瓶颈,本研究突破传统材料体系限制,创新性地采用静电纺丝技术将聚乙二醇引入聚丙烯腈纤维体系,通过非溶剂诱导相分离过程,成功制备出兼具相变温度调节特性和高效隔热性能的蓬松结构相变纤维。蓬松纤维内部形成的多孔结构可构建高效冷屏蔽层,其热导率低至0.0395W/m·K;同时,聚乙二醇相变组分赋予材料优异的相变潜热(80.6 J/g),实现了温度调节与隔热保温的协同作用。该材料表现出优异的结构与热稳定性:在经历500次热循环后仍保持稳定的相变性能,并在300℃以内具备良好的热可靠性。即使在相变熔点以上,材料仍能有效防止相变组分泄漏。同时,其良好的机械性能可满足弯曲、压缩(668.7 Pa)及拉伸(253.5 kPa)等多种形变需求,未发生结构塌陷。人体热管理实验进一步证实,其冷防护性能显著优于传统棉花材料。本研究不仅提供了一种“储热-隔热”一体化纤维的创新制备方案,更从原理上拓展了相变纤维在热管理中的设计维度,为开发高性能可穿戴冷防护材料提供重要的解决方案和理论指导。Phase change fibers have gained prominence as an advanced functional material for personal thermal management, demonstrating significant potential for practical applications. However, current research systems face critical limitations: conventional phase change fibers prepared via wet spinning and electrospun phase change fiber films suffer from inadequate thermal insulation due to their structural compactness deficiencies, thereby failing to effectively prevent body heat loss in cold environments. To address this technical challenge, this study breaks through traditional material system constraints by innovatively employing electrospinning technology to incorporate polyethylene glycol (PEG) into polyacrylonitrile (PAN) fiber systems. We successfully fabricated fluffy structure phase change fibers that integrate both phase change thermoregulation and thermal insulation functions with the principle of non-solvent-induced phase separation. The internal porous structure of the fluffy fibers constructs an effective cold protection layer, exhibiting an ultra-low thermal conductivity of 0.0395 W/m·K. Simultaneously, the PEG phase change component imparts a high latent heat of 80.6 J/g, achieving a synergistic effect of temperature regulation and thermal insulation. The material demonstrates excellent structural and thermal stability: it maintains stable phase change performance after 500 thermal cycles and exhibits exceptional thermal reliability up to 300 ℃. Even above the phase change melting point, the material effectively prevents leakage of the phase change component. Furthermore, it possesses sufficient mechanical properties to withstand various deformations such as bending, compression (668.7 Pa), and stretching (253.5 kPa) without structural collapse. Practical application evaluations further demonstrate that the material's cold protection performance significantly surpasses that of natural cotton. This study not only provides an innovative strategy for fabricating integrated “heat storage-thermal insulation” fibers but also conceptually expands the design dimensions of phase change fibers in thermal management, offering important solutions and theoretical guidance for developing high performance wearable cold-protection materials.- 
													Keywords:
													
- Fluffy structure phase change fibers /
- Polyethylene glycol /
- Polyacrylonitrile /
- Personal cold protection
 
- 
				
[1] Ahn Y-H, DeWitt S J A, McGuire S, Lively R P 2021 Industrial&Engineering Chemistry Research 60 3374 [2] Wu W, Song Q, Li N, Wang Y, Yu J, Hu Z 2024 Journal of Applied Polymer Science 141 e55034 [3] Ma Y, Shen J, Li T, Sheng X, Chen Y 2024 Solar Energy Materials and Solar Cells 276 113078 [4] Bao Y, Lyu J, Liu Z, Ding Y, Zhang X 2021 ACS Nano 15 15180 [5] Cao H, Xu Z, Zhang T, Zhao Y 2023 Chemical Engineering Journal 478 147389 [6] Yang K, Duan C, Ma R, Liu X, Meng Z, Xie Z, Ni Y 2024 Carbohydrate Polymers 346 122649 [7] Xiao J, Wang Z, Chen Q, Zhou Y, Xu Z, Wang Y, Jiang X, Zhang A, Saeed H A M, Xu T, Yang H 2024 ACS Applied Energy Materials 7 4494 [8] Toomey M D, Kanbargi N, Kearney L T, Hinton H, Gupta S, Sawafta R, Naskar A K, Sharma J 2024 Advanced Engineering Materials 26 2400012 [9] Suárez-García A, Arce E, Alford L, Luhrs C C 2023 Renewable and Sustainable Energy Reviews 187 113648 [10] Gu B, Li G, Zhang Q, Pan H, Duan M, Weng L, Zhao D 2025 Advanced Functional Materials 35 2412089 [11] Ji R, Zhang Q, Zhou F, Xu F, Wang X, Huang C, Zhu Y, Zhang H, Sun L, Xia Y, Lin X, Peng H, Zou Y, Chu H 2021 Journal of Energy Storage 40 102687 [12] Patel D, Wei W, Singh H, Xu K, Beck C, Wildy M, Schossig J, Hu X, Hyun D C, Chen W, Lu P 2023 ACS Sustainable Chemistry&Engineering 11 11570 [13] Aksoy S A, Yılmaz D, Maleki H, Rahbar R S, Barani H 2024 Journal of Energy Storage 101 113849 [14] Kumar A, Kebaili I, Boukhris I, Vaish R, Kumar A, Park H K B, Joo Y H, Sung T H 2023 Scientific Reports 13 5923 [15] Sheng N, Rao Z, Zhu C, Habazaki H 2020 Solar energy materials solar cells 205 110241 [16] Dirlik-Uysal D, Mínguez-García D, Bou-Belda E, Gisbert-Payá J, Bonet-Aracil M 2024 Applied Sciences 14 4725 [17] Islam S, Hasan B 2025 SPE Polymers 6 e10167 [18] Liu C, Wang S, Wang N, Yu J, Liu Y-T, Ding B 2022 Nano-Micro Letters 14 194 [19] Xu H, Wang S, Gong X, Yang M, Liu X, Zhang S, Yu J, Ding B 2022 Composites Communications 29 101024 [20] Yang W, Liu H, Du H, Zhang M, Wang C, Yin R, Pan C, Liu C, Shen C 2023 Science China Materials 66 2829 [21] Liu X, Hou G, Zhao J, Zhao W, Xu Q, Zheng X, Liu Z, Lai Y 2023 Chemical Engineering Journal 465 142826 [22] Xu C, Yue C, Yao Y, Yu Y, Li L, Liu X 2024 Journal of Energy Storage 84 110991 [23] Kou Y, Sun K, Luo J, Zhou F, Huang H, Wu Z-S, Shi Q 2021 Energy Storage Materials 34 508 [24] Zhao L, Wu H, Jiao W, Yin X, Si Y, Yu J, Ding B 2021 Composites Communications 25 100681 [25] Chen X, Xu Y, Zhang W, Xu K, Ke Q, Jin X, Huang C 2019 Nanoscale 11 8185 [26] Liu M H, Shen H L 2018 plastomer 47 108(in Chinese)[刘美惠,沈惠玲2018 塑料47 108] [27] Deng C, Dong H, Sun K, Kou Y, Liu H, Jian W, Shi Q 2023 Advanced Functional Materials 33 2212259 [28] Li Y, Sun K, Kou Y, Liu H, Wang L, Yin N, Dong H, Shi Q 2022 Chemical Engineering Journal 429 132439 [29] Yang J, Zhang T, Wang S, Wang S, Ding H, Xie J, Xu D, Huang Q, Liu C 2025 Vacuum 238 114214 [30] Strnad J, Vengar 1984 European Journal of Physics 5 9 [31] El Majd A, Sair S, Ousaleh H A, Bouhaj Y, Belouaggadia N, Younsi Z, El Bouari A 2024 Journal of Energy Storage 95 112681 [32] Zhang S Y, Yue J Y, Yang J L, Chai X S, Feng Z G, Zhang A Y 2023 Journal of Textile Research 44 11(in Chinese)[张少月,岳江昱,杨家乐,柴晓帅,冯增 国,张爱英2023纺织学报44 11] [33] Xu J, Chen L, Wang J Y, He Y 2024 Polymer Materials Science and Engineering 40 134(in Chinese)[徐瑾,陈龙,王金玉,何燕2024高分子材料科学与工程 40 134] [34] Chen G, Shi T, Zhang X, Cheng F, Wu X, Leng G, Liu Y, Fang M, Min X, Huang Z 2020 Polymer 186 122012 
计量
- 文章访问数: 13
- PDF下载量: 1
- 被引次数: 0


 
					 
		         
	         
  
					 
										





 下载:
下载: 
				