-
相变纤维作为人体热量管理领域的新型功能材料, 其应用价值日益凸显. 然而, 现有研究体系存在显著的局限性: 基于湿法纺丝工艺制备的单根相变纤维和静电纺丝技术构建的相变纤维薄膜, 因其结构致密性不足导致隔热性能欠佳, 难以有效阻遏寒冷环境下的体温散失. 针对这一技术瓶颈, 本研究突破传统材料体系限制, 创新性地采用静电纺丝技术将聚乙二醇引入聚丙烯腈纤维体系, 通过非溶剂诱导相分离过程, 成功制备出兼具相变温度调节特性和高效隔热性能的蓬松结构相变纤维. 蓬松纤维内部形成的多孔结构可构建高效冷屏蔽层, 其热导率低至0.0395 W/(m·K); 同时, 聚乙二醇相变组分赋予材料优异的相变潜热(80.6 J/g), 实现了温度调节与隔热保温的协同作用. 该材料表现出优异的结构与热稳定性, 在经历500次热循环后仍保持稳定的相变性能, 并在温度低于300 ℃时具备良好的热可靠性. 即使在相变熔点以上, 材料仍能有效防止相变组分泄漏. 同时, 其良好的机械性能可满足弯曲、压缩(668.7 Pa)及拉伸(253.5 kPa)等多种形变需求, 未发生结构塌陷. 人体热管理实验进一步证实, 其冷防护性能显著优于传统棉花材料. 本研究不仅提供了一种“储热-隔热”一体化纤维的创新制备方案, 更从原理上拓展了相变纤维在热管理中的设计维度, 为开发高性能可穿戴冷防护材料提供重要的解决方案和理论指导.Phase change fibers, as an advanced functional material for human body thermal management, have significant potential for practical applications. However, current research systems face critical limitations: traditional phase change fibers prepared via wet spinning and electrospun phase change fiber films encounter insufficient thermal insulation due to their structural compactness deficiencies, thereby failing to effectively prevent body heat loss in cold environments. To tackle this technical challenge, this work breaks through traditional material system limitations by innovatively employing electrospinning technology to integrate polyethylene glycol (PEG) into polyacrylonitrile (PAN) fiber systems. We successfully fabricate fluffy-tructured phase change fibers that integrate both phase change thermoregulation and thermal insulation functions using the principle of non-solvent-induced phase separation. The internal porous structure of the fluffy fibers constructs an effective cold protection layer, exhibiting an ultra-low thermal conductivity of 0.0395 W/m·K. At the same time, the PEG phase change componentprovides a high latent heat of 80.6 J/g, achieving a synergistic effect of temperature regulation and thermal insulation. The material exhibits excellent structural and thermal stability: maintaining stable phase change performance after 500 thermal cycles and exhibiting exceptional thermal reliability up to 300 ℃. Even above the phase change melting point, the material effectively prevents leakage of the phase change component. Furthermore, it possesses sufficient mechanical properties to withstand various deformations such as bending, compression (668.7 Pa), and stretching (253.5 kPa) without structural collapse. Practical application evaluations further demonstrate that the material’s cold protection performance significantly exceeds that of natural cotton. This study not only provides an innovative strategy for fabricating integrated “heat storage-thermal insulation” fibers, but also conceptually expands the design dimensions of phase change fibers in thermal management, offering important solutions and theoretical guidance for developing high performance wearable cold-protection materials.
-
Keywords:
- fluffy structure phase change fibers /
- polyethylene glycol /
- polyacrylonitrile /
- personal cold protection
-
图 1 蓬松结构相变纤维的制备原理和展示照片 (a) PEG/PAN纺丝液组成为5∶5, 6∶4, 7∶3时的相稳定性展示; (b) PAN-H2O-DMF的浊点曲线; (c) PAN-H2O-DMF体系的三元相图; (d) PEG/PAN相变纤维的展示照片; (e) 超轻的PEG/PAN相变纤维立于树叶表面; (f) 在寒冷环境下PEG/PAN相变纤维穿戴于雪人的冷防护演示照片
Fig. 1. Preparation principle and demonstration photographs of fluffy structure phase change fibers: (a) Demonstration of phase stability for PEG/PAN spinning solutions with different mass ratios (5∶5, 6∶4, and 7∶3); (b) cloud point curve of the PAN-H2O-DMF system; (c) ternary phase diagram of the PAN-H2O-DMF system; (d) photograph of phase change fibers; (e) the ultra-lightweight PEG/PAN phase change fibers standing on a leaf surface; (f) cold protection demonstration of the PEG/PAN phase change fibers applied on a snowman under freezing conditions.
图 4 PEG/PAN相变纤维的相变性能和热性能 (a) 纯PEG和(b) PEG/PAN相变纤维在20 ℃和40 ℃的宏观形貌数码照片; (c) 纯PEG和PEG/PAN相变纤维的DSC曲线; (d) 本研究PEG/PAN相变纤维与文献中报道的用于冷防护相变织物在热导率性能的对比[3,31–34]; (e) PEG/PAN纤维在–20—40 ℃的热导率变化图; (f) 纯PEG和PEG/PAN相变纤维的TG曲线; (g) PEG/PAN相变纤维经历1—500次热循环的DSC曲线; (h) PEG/PAN相变纤维经历热循环前后的导热率
Fig. 4. Phase change performance and thermal properties of PEG/PAN phase change fibers: Digital photos of the macroscopic morphology of (a) pure PEG and (b) PEG/PAN phase change fibers at 20 ℃ and 40 ℃; (c) DSC curves of pure PEG and PEG/PAN phase change fibers; (d) comparison of thermal conductivity between the PEG/PAN phase change fibers in this study and phase change fabrics reported for cold protection in the literature[3,31–34]; (e) thermal conductivity of PEG/PAN phase change fibers from –20 ℃ to 40 ℃; (f) TG curves of pure PEG and PEG/PAN phase change fibers; (g) DSC curves of PEG/PAN phase change fibers after different numbers of thermal cycles; (h) thermal conductivity of PEG/PAN phase change fibers before and after the thermal.
图 6 PEG/PAN相变纤维的人体冷防护实验 (a) 冷防护实验展示图; (b) 温度-时间变化曲线; (c) 棉花和PEG/PAN相变纤维应用与人体的热红外成像图
Fig. 6. Personal cold protection experiments of PEG/PAN phase change fibers: (a) Cold protection experiment diagram; (b) temperature-time variation curves; (c) the thermal infrared imaging of the real human body using cotton and PEG/PAN fibers.
表 1 PEG/PAN相变纤维的相变热参数
Table 1. Phase change thermal parameters of PEG/PAN phase change fibers.
样品名称 Tm/℃ ∆Hm/(J·g–1) Tc/°C ∆Hc/(J·g–1) PEG 25.1 152.4 26.1 146.6 PEG/PAN 21.8 80.6 23.5 71.8 第100次循环 21.8 80.1 23.5 71.3 第200次循环 21.7 79.4 23.4 70.6 第300次循环 21.7 80.3 23.5 71.1 第400次循环 21.9 80.1 23.6 70.0 第500次循环 21.8 79.4 23.6 70.5 -
[1] Ahn Y H, DeWitt S J A, McGuire S, Lively R P 2021 Ind. Eng. Chem. Res. 60 3374
Google Scholar
[2] Wu W W, Song Q Q, Li N, Wang Y, Yu J R, Hu Z M 2024 J. Appl. Polym. Sci. 141 e55034
Google Scholar
[3] Ma Y Q, Shen J F, Li T, Sheng X X, Chen Y 2024 Sol. Energy Mater. Sol. Cells 276 113078
Google Scholar
[4] Bao Y Q, Lyu J, Liu Z W, Ding Y, Zhang X T 2021 ACS Nano 15 15180
Google Scholar
[5] Cao H, Xu Z G, Zhang T, Zhao Y 2023 Chem. Eng. J. 478 147389
Google Scholar
[6] Yang K, Duan C, Ma R T, Liu X S, Meng Z X, Xie Z Y, Ni Y H 2024 Carbohyd. Polym. 346 122649
Google Scholar
[7] Xiao J F, Wang Z L, Chen Q Q, Zhou Y H, Xu Z Q, Wang Y, Jiang X L, Zhang A X, Saeed H A M, Xu T, Yang H J 2024 ACS Appl. Energy Mater. 7 4494
Google Scholar
[8] Toomey M D, Kanbargi N, Kearney L T, Hinton H, Gupta S, Sawafta R, Naskar A K, Sharma J 2024 Adv. Eng. Mater. 26 2400012
Google Scholar
[9] Suárez-García A, Arce E, Alford L, Luhrs C C 2023 Renew. Sust. Energy Rev. 187 113648
Google Scholar
[10] Gu B, Li G, Zhang Q, Pan H D, Duan M F, Weng L Q, Zhao D L 2025 Adv. Funct. Mater. 35 2412089
Google Scholar
[11] Ji R, Zhang Q F, Zhou F X, Xu F, Wang X D, Huang C W, Zhu Y C, Zhang H Z, Sun L X, Xia Y P, Lin X C, Peng H L, Zou Y J, Chu H L 2021 J. Energy Storage 40 102687
Google Scholar
[12] Patel D, Wei W, Singh H, Xu K, Beck C, Wildy M, Schossig J, Hu X, Hyun D C, Chen W, Lu P 2023 ACS Sustainable Chem. Eng. 11 11570
Google Scholar
[13] Aksoy S A, Yılmaz D, Maleki H, Rahbar R S, Barani H 2024 J. Energy Storage 101 113849
Google Scholar
[14] Kumar A, Kebaili I, Boukhris I, Vaish R, Kumar A, Park H K B, Joo Y H, Sung T H 2023 Sci. Rep. 13 5923
Google Scholar
[15] Sheng N, Rao Z H, Zhu C Y, Habazaki H 2020 Sol. Energy Mater. Solar cells 205 110241
Google Scholar
[16] Dirlik-Uysal D, Mínguez-García D, Bou-Belda E, Gisbert-Payá J, Bonet-Aracil M 2024 Appl. Sci. 14 4725
Google Scholar
[17] Islam S, Hasan B 2025 SPE Polym. 6 e10167
Google Scholar
[18] Liu C, Wang S, Wang N, Yu J Y, Liu Y T, Ding B 2022 Nano-Micro Lett. 14 194
Google Scholar
[19] Xu H Y, Wang S, Gong X B, Yang M, Liu X Y, Zhang S C, Yu J Y, Ding B 2022 Compos. Commun. 29 101024
Google Scholar
[20] Yang W K, Liu H, Du H Y, Zhang M Y, Wang C F, Yin R, Pan C F, Liu C T, Shen C Y 2023 Sci. China Mater. 66 2829
Google Scholar
[21] Liu X H, Hou G K, Zhao J H, Zhao W J, Xu Q B, Zheng X H, Liu Z, Lai Y K 2023 Chem. Eng. J. 465 142826
Google Scholar
[22] Xu C W, Yue C J, Yao Y, Yu Y, Li L R, Liu X D 2024 J. Energy Storage 84 110991
Google Scholar
[23] Kou Y, Sun K Y, Luo J P, Zhou F, Huang H B, Wu Z S, Shi Q 2021 Energy Storage Mater. 34 508
Google Scholar
[24] Zhao L, Wu H Y, Jiao W L, Yin X, Si Y, Yu J Y, Ding B 2021 Compos. Commun. 25 100681
Google Scholar
[25] Chen X, Xu Y, Zhang W X, Xu K L, Ke Q F, Jin X Y, Huang C 2019 Nanoscale 11 8185
Google Scholar
[26] 刘美惠, 沈惠玲 2018 塑料 47 108
Liu M H, Shen H L 2018 Plastomer 47 108
[27] Deng C X, Dong H S, Sun K Y, Kou Y, Liu H Q, Jian W W, Shi Q 2023 Adv. Funct. Mater. 33 2212259
Google Scholar
[28] Li Y G, Sun K Y, Kou Y, Liu H Q, Wang L, Yin N, Dong H S, Shi Q 2022 Chem. Eng. J. 429 132439
Google Scholar
[29] Yang J L, Zhang T Y, Wang S L, Wang S S, Ding H Y, Xie J H, Xu D J, Huang Q, Liu C C 2025 Vacuum 238 114214
Google Scholar
[30] Strnad J, Vengar 1984 Eur. J. Phys. 5 9
Google Scholar
[31] El Majd A, Sair S, Ousaleh H A, Bouhaj Y, Belouaggadia N, Younsi Z, El Bouari A 2024 J. Energy Storage 95 112681
Google Scholar
[32] 张少月, 岳江昱, 杨家乐, 柴晓帅, 冯增国, 张爱英 2023 纺织学报 44 11
Zhang S Y, Yue J Y, Yang J L, Chai X S, Feng Z G, Zhang A Y 2023 J. Textile Res. 44 11
[33] 徐瑾, 陈龙, 王金玉, 何燕 2024 高分子材料科学与工程 40 134
Xu J, Chen L, Wang J Y, He Y 2024 Polym. Mater. Sci. Eng. 40 134
[34] Chen G, Shi T T, Zhang X G, Cheng F, Wu X W, Leng G Q, Liu Y G, Fang M H, Min X, Huang Z H 2020 Polymer 186 122012
Google Scholar
计量
- 文章访问数: 536
- PDF下载量: 12
- 被引次数: 0








下载: