搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

蓬松结构相变纤维应用于人体冷防护

戴鹤男 张施慧 邓成鑫 史全 张志华 刘汉卿 寇艳 魏争

引用本文:
Citation:

蓬松结构相变纤维应用于人体冷防护

戴鹤男, 张施慧, 邓成鑫, 史全, 张志华, 刘汉卿, 寇艳, 魏争

Fluffy-structured phase-change fibers for human body cold protection

DAI Henan, ZHANG Shihui, DENG Chengxin, SHI Quan, ZHANG Zhihua, LIU Hanqing, KOU Yan, WEI Zheng
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
在线预览
  • 相变纤维作为人体热量管理领域的新型功能材料, 其应用价值日益凸显. 然而, 现有研究体系存在显著的局限性: 基于湿法纺丝工艺制备的单根相变纤维和静电纺丝技术构建的相变纤维薄膜, 因其结构致密性不足导致隔热性能欠佳, 难以有效阻遏寒冷环境下的体温散失. 针对这一技术瓶颈, 本研究突破传统材料体系限制, 创新性地采用静电纺丝技术将聚乙二醇引入聚丙烯腈纤维体系, 通过非溶剂诱导相分离过程, 成功制备出兼具相变温度调节特性和高效隔热性能的蓬松结构相变纤维. 蓬松纤维内部形成的多孔结构可构建高效冷屏蔽层, 其热导率低至0.0395 W/(m·K); 同时, 聚乙二醇相变组分赋予材料优异的相变潜热(80.6 J/g), 实现了温度调节与隔热保温的协同作用. 该材料表现出优异的结构与热稳定性, 在经历500次热循环后仍保持稳定的相变性能, 并在温度低于300 ℃时具备良好的热可靠性. 即使在相变熔点以上, 材料仍能有效防止相变组分泄漏. 同时, 其良好的机械性能可满足弯曲、压缩(668.7 Pa)及拉伸(253.5 kPa)等多种形变需求, 未发生结构塌陷. 人体热管理实验进一步证实, 其冷防护性能显著优于传统棉花材料. 本研究不仅提供了一种“储热-隔热”一体化纤维的创新制备方案, 更从原理上拓展了相变纤维在热管理中的设计维度, 为开发高性能可穿戴冷防护材料提供重要的解决方案和理论指导.
    Phase change fibers, as an advanced functional material for human body thermal management, have significant potential for practical applications. However, current research systems face critical limitations: traditional phase change fibers prepared via wet spinning and electrospun phase change fiber films encounter insufficient thermal insulation due to their structural compactness deficiencies, thereby failing to effectively prevent body heat loss in cold environments. To tackle this technical challenge, this work breaks through traditional material system limitations by innovatively employing electrospinning technology to integrate polyethylene glycol (PEG) into polyacrylonitrile (PAN) fiber systems. We successfully fabricate fluffy-tructured phase change fibers that integrate both phase change thermoregulation and thermal insulation functions using the principle of non-solvent-induced phase separation. The internal porous structure of the fluffy fibers constructs an effective cold protection layer, exhibiting an ultra-low thermal conductivity of 0.0395 W/m·K. At the same time, the PEG phase change componentprovides a high latent heat of 80.6 J/g, achieving a synergistic effect of temperature regulation and thermal insulation. The material exhibits excellent structural and thermal stability: maintaining stable phase change performance after 500 thermal cycles and exhibiting exceptional thermal reliability up to 300 ℃. Even above the phase change melting point, the material effectively prevents leakage of the phase change component. Furthermore, it possesses sufficient mechanical properties to withstand various deformations such as bending, compression (668.7 Pa), and stretching (253.5 kPa) without structural collapse. Practical application evaluations further demonstrate that the material’s cold protection performance significantly exceeds that of natural cotton. This study not only provides an innovative strategy for fabricating integrated “heat storage-thermal insulation” fibers, but also conceptually expands the design dimensions of phase change fibers in thermal management, offering important solutions and theoretical guidance for developing high performance wearable cold-protection materials.
  • 图 1  蓬松结构相变纤维的制备原理和展示照片 (a) PEG/PAN纺丝液组成为5∶5, 6∶4, 7∶3时的相稳定性展示; (b) PAN-H2O-DMF的浊点曲线; (c) PAN-H2O-DMF体系的三元相图; (d) PEG/PAN相变纤维的展示照片; (e) 超轻的PEG/PAN相变纤维立于树叶表面; (f) 在寒冷环境下PEG/PAN相变纤维穿戴于雪人的冷防护演示照片

    Fig. 1.  Preparation principle and demonstration photographs of fluffy structure phase change fibers: (a) Demonstration of phase stability for PEG/PAN spinning solutions with different mass ratios (5∶5, 6∶4, and 7∶3); (b) cloud point curve of the PAN-H2O-DMF system; (c) ternary phase diagram of the PAN-H2O-DMF system; (d) photograph of phase change fibers; (e) the ultra-lightweight PEG/PAN phase change fibers standing on a leaf surface; (f) cold protection demonstration of the PEG/PAN phase change fibers applied on a snowman under freezing conditions.

    图 2  PEG/PAN相变纤维的XRD图

    Fig. 2.  XRD image of PEG/PAN phase change fibers.

    图 3  (a) 纯PAN纤维和(b) PEG/PAN相变纤维的SEM图

    Fig. 3.  SEM images of (a) pure PAN fibers and (b) PEG/PAN phase change fibers.

    图 4  PEG/PAN相变纤维的相变性能和热性能 (a) 纯PEG和(b) PEG/PAN相变纤维在20 ℃和40 ℃的宏观形貌数码照片; (c) 纯PEG和PEG/PAN相变纤维的DSC曲线; (d) 本研究PEG/PAN相变纤维与文献中报道的用于冷防护相变织物在热导率性能的对比[3,3134]; (e) PEG/PAN纤维在–20—40 ℃的热导率变化图; (f) 纯PEG和PEG/PAN相变纤维的TG曲线; (g) PEG/PAN相变纤维经历1—500次热循环的DSC曲线; (h) PEG/PAN相变纤维经历热循环前后的导热率

    Fig. 4.  Phase change performance and thermal properties of PEG/PAN phase change fibers: Digital photos of the macroscopic morphology of (a) pure PEG and (b) PEG/PAN phase change fibers at 20 ℃ and 40 ℃; (c) DSC curves of pure PEG and PEG/PAN phase change fibers; (d) comparison of thermal conductivity between the PEG/PAN phase change fibers in this study and phase change fabrics reported for cold protection in the literature[3,3134]; (e) thermal conductivity of PEG/PAN phase change fibers from –20 ℃ to 40 ℃; (f) TG curves of pure PEG and PEG/PAN phase change fibers; (g) DSC curves of PEG/PAN phase change fibers after different numbers of thermal cycles; (h) thermal conductivity of PEG/PAN phase change fibers before and after the thermal.

    图 5  PEG/PAN相变纤维的机械性能 (a) PEG/PAN纤维的柔性展示图; (b) 拉伸应力-应变曲线; (c) 压缩应力-应变曲线

    Fig. 5.  Mechanical properties of PEG/PAN phase change fibers: (a) Flexible display diagram of PEG/PAN fibers; (b) stretch stress-strain curve; (c) compression stress-strain curve.

    图 6  PEG/PAN相变纤维的人体冷防护实验 (a) 冷防护实验展示图; (b) 温度-时间变化曲线; (c) 棉花和PEG/PAN相变纤维应用与人体的热红外成像图

    Fig. 6.  Personal cold protection experiments of PEG/PAN phase change fibers: (a) Cold protection experiment diagram; (b) temperature-time variation curves; (c) the thermal infrared imaging of the real human body using cotton and PEG/PAN fibers.

    表 1  PEG/PAN相变纤维的相变热参数

    Table 1.  Phase change thermal parameters of PEG/PAN phase change fibers.

    样品名称Tm/℃∆Hm/(J·g–1)Tc/°C∆Hc/(J·g–1)
    PEG25.1152.426.1146.6
    PEG/PAN21.880.623.571.8
    第100次循环21.880.123.571.3
    第200次循环21.779.423.470.6
    第300次循环21.780.323.571.1
    第400次循环21.980.123.670.0
    第500次循环21.879.423.670.5
    下载: 导出CSV
  • [1]

    Ahn Y H, DeWitt S J A, McGuire S, Lively R P 2021 Ind. Eng. Chem. Res. 60 3374Google Scholar

    [2]

    Wu W W, Song Q Q, Li N, Wang Y, Yu J R, Hu Z M 2024 J. Appl. Polym. Sci. 141 e55034Google Scholar

    [3]

    Ma Y Q, Shen J F, Li T, Sheng X X, Chen Y 2024 Sol. Energy Mater. Sol. Cells 276 113078Google Scholar

    [4]

    Bao Y Q, Lyu J, Liu Z W, Ding Y, Zhang X T 2021 ACS Nano 15 15180Google Scholar

    [5]

    Cao H, Xu Z G, Zhang T, Zhao Y 2023 Chem. Eng. J. 478 147389Google Scholar

    [6]

    Yang K, Duan C, Ma R T, Liu X S, Meng Z X, Xie Z Y, Ni Y H 2024 Carbohyd. Polym. 346 122649Google Scholar

    [7]

    Xiao J F, Wang Z L, Chen Q Q, Zhou Y H, Xu Z Q, Wang Y, Jiang X L, Zhang A X, Saeed H A M, Xu T, Yang H J 2024 ACS Appl. Energy Mater. 7 4494Google Scholar

    [8]

    Toomey M D, Kanbargi N, Kearney L T, Hinton H, Gupta S, Sawafta R, Naskar A K, Sharma J 2024 Adv. Eng. Mater. 26 2400012Google Scholar

    [9]

    Suárez-García A, Arce E, Alford L, Luhrs C C 2023 Renew. Sust. Energy Rev. 187 113648Google Scholar

    [10]

    Gu B, Li G, Zhang Q, Pan H D, Duan M F, Weng L Q, Zhao D L 2025 Adv. Funct. Mater. 35 2412089Google Scholar

    [11]

    Ji R, Zhang Q F, Zhou F X, Xu F, Wang X D, Huang C W, Zhu Y C, Zhang H Z, Sun L X, Xia Y P, Lin X C, Peng H L, Zou Y J, Chu H L 2021 J. Energy Storage 40 102687Google Scholar

    [12]

    Patel D, Wei W, Singh H, Xu K, Beck C, Wildy M, Schossig J, Hu X, Hyun D C, Chen W, Lu P 2023 ACS Sustainable Chem. Eng. 11 11570Google Scholar

    [13]

    Aksoy S A, Yılmaz D, Maleki H, Rahbar R S, Barani H 2024 J. Energy Storage 101 113849Google Scholar

    [14]

    Kumar A, Kebaili I, Boukhris I, Vaish R, Kumar A, Park H K B, Joo Y H, Sung T H 2023 Sci. Rep. 13 5923Google Scholar

    [15]

    Sheng N, Rao Z H, Zhu C Y, Habazaki H 2020 Sol. Energy Mater. Solar cells 205 110241Google Scholar

    [16]

    Dirlik-Uysal D, Mínguez-García D, Bou-Belda E, Gisbert-Payá J, Bonet-Aracil M 2024 Appl. Sci. 14 4725Google Scholar

    [17]

    Islam S, Hasan B 2025 SPE Polym. 6 e10167Google Scholar

    [18]

    Liu C, Wang S, Wang N, Yu J Y, Liu Y T, Ding B 2022 Nano-Micro Lett. 14 194Google Scholar

    [19]

    Xu H Y, Wang S, Gong X B, Yang M, Liu X Y, Zhang S C, Yu J Y, Ding B 2022 Compos. Commun. 29 101024Google Scholar

    [20]

    Yang W K, Liu H, Du H Y, Zhang M Y, Wang C F, Yin R, Pan C F, Liu C T, Shen C Y 2023 Sci. China Mater. 66 2829Google Scholar

    [21]

    Liu X H, Hou G K, Zhao J H, Zhao W J, Xu Q B, Zheng X H, Liu Z, Lai Y K 2023 Chem. Eng. J. 465 142826Google Scholar

    [22]

    Xu C W, Yue C J, Yao Y, Yu Y, Li L R, Liu X D 2024 J. Energy Storage 84 110991Google Scholar

    [23]

    Kou Y, Sun K Y, Luo J P, Zhou F, Huang H B, Wu Z S, Shi Q 2021 Energy Storage Mater. 34 508Google Scholar

    [24]

    Zhao L, Wu H Y, Jiao W L, Yin X, Si Y, Yu J Y, Ding B 2021 Compos. Commun. 25 100681Google Scholar

    [25]

    Chen X, Xu Y, Zhang W X, Xu K L, Ke Q F, Jin X Y, Huang C 2019 Nanoscale 11 8185Google Scholar

    [26]

    刘美惠, 沈惠玲 2018 塑料 47 108

    Liu M H, Shen H L 2018 Plastomer 47 108

    [27]

    Deng C X, Dong H S, Sun K Y, Kou Y, Liu H Q, Jian W W, Shi Q 2023 Adv. Funct. Mater. 33 2212259Google Scholar

    [28]

    Li Y G, Sun K Y, Kou Y, Liu H Q, Wang L, Yin N, Dong H S, Shi Q 2022 Chem. Eng. J. 429 132439Google Scholar

    [29]

    Yang J L, Zhang T Y, Wang S L, Wang S S, Ding H Y, Xie J H, Xu D J, Huang Q, Liu C C 2025 Vacuum 238 114214Google Scholar

    [30]

    Strnad J, Vengar 1984 Eur. J. Phys. 5 9Google Scholar

    [31]

    El Majd A, Sair S, Ousaleh H A, Bouhaj Y, Belouaggadia N, Younsi Z, El Bouari A 2024 J. Energy Storage 95 112681Google Scholar

    [32]

    张少月, 岳江昱, 杨家乐, 柴晓帅, 冯增国, 张爱英 2023 纺织学报 44 11

    Zhang S Y, Yue J Y, Yang J L, Chai X S, Feng Z G, Zhang A Y 2023 J. Textile Res. 44 11

    [33]

    徐瑾, 陈龙, 王金玉, 何燕 2024 高分子材料科学与工程 40 134

    Xu J, Chen L, Wang J Y, He Y 2024 Polym. Mater. Sci. Eng. 40 134

    [34]

    Chen G, Shi T T, Zhang X G, Cheng F, Wu X W, Leng G Q, Liu Y G, Fang M H, Min X, Huang Z H 2020 Polymer 186 122012Google Scholar

  • [1] 李丽丽, 韩爽, 王玉龙, 刘统江, 李育哲, 高俊国. 氢键对聚丙烯复合材料分子结构与电荷输运特性的影响. 物理学报, doi: 10.7498/aps.74.20250277
    [2] 李鹏飞, 刘宛琦, 哈帅, 潘俞舟, 樊栩宏, 杜战辉, 万城亮, 崔莹, 姚科, 马越, 杨治虎, 邵曹杰, Reinhold Schuch, 路迪, 宋玉收, 张红强, 陈熙萌. 低能电子在直径为800 nm的聚对苯二甲酸乙二醇酯纳米微通道中的输运过程. 物理学报, doi: 10.7498/aps.74.20241196
    [3] 张恒博, 李银辉, 李玮栋, 高飞, 殷荣艳, 梁建国, 赵鹏, 周赟磊, 李朋伟, 边桂彬. PAN/MoS2柔性复合纳米纤维膜的压电传感特性. 物理学报, doi: 10.7498/aps.74.20241676
    [4] 李银辉, 殷荣艳, 梁建国, 李玮栋, 范凯, 周赟磊. 一种耐高温的柔性压电/热释电双功能传感器. 物理学报, doi: 10.7498/aps.73.20241006
    [5] 朱祥宁, 冯黛丽, 冯妍卉, 林林, 张欣欣. 木基生物质碳化骨架负载聚乙二醇相变材料及表面修饰对蓄传热性能的强化. 物理学报, doi: 10.7498/aps.72.20222466
    [6] 田丽丽, 王楠, 彭银利, 姚文静. 定向结晶条件下聚乙二醇6000的强动力学效应. 物理学报, doi: 10.7498/aps.65.096401
    [7] 唐海通, 敖玉辉, 王聪, 赵瑞雪, 高忠民, 孟繁玲. 聚丙烯腈基碳纤维原丝在纺丝过程中纳米孔变化规律与机理研究. 物理学报, doi: 10.7498/aps.64.046101
    [8] 迟晓红, 高俊国, 郑杰, 张晓虹. 聚丙烯中电树枝生长机理研究. 物理学报, doi: 10.7498/aps.63.177701
    [9] 王小伍, 徐海红. 多元醇二元体系固-固相变机理的研究. 物理学报, doi: 10.7498/aps.63.136501
    [10] 张欣梧, 张晓青. 聚丙烯压电驻极体膜的压电和声学性能研究. 物理学报, doi: 10.7498/aps.62.167702
    [11] 孙健, 刘伟强. 内嵌定向高导热层疏导式结构热防护机理分析. 物理学报, doi: 10.7498/aps.61.124401
    [12] 孙健, 刘伟强. 疏导式结构在头锥热防护中的应用. 物理学报, doi: 10.7498/aps.61.174401
    [13] 王小伍, 徐海红. 多元醇固—固相变机理的研究. 物理学报, doi: 10.7498/aps.60.030507
    [14] 张彩红, 盛毅, 田红, 徐耀, 吕春祥, 吴忠华. 全谱拟合法研究聚丙烯腈基碳纤维形成过程中晶态结构演变. 物理学报, doi: 10.7498/aps.60.036101
    [15] 高鹏举, 章文贡, 陈淑卿, 周秀华, 肖丽足. YBCO/聚丙烯腈杂化膜及其超导性研究. 物理学报, doi: 10.7498/aps.59.583
    [16] 张瑜, 戴耀东, 常树全, 康斌. 聚丙烯酸铅辐射防护材料的制备及性能研究. 物理学报, doi: 10.7498/aps.58.6604
    [17] 何寿杰, 哈 静, 张子生, 赵增超, 董丽芳, 王 龙, 王志军. 乙二醇溶液中圆锥泡声致发光的发光特性. 物理学报, doi: 10.7498/aps.56.1779
    [18] 陶瑞宝, 虞恩溪, 卢建华, 陈哲. Ohn空间群Γ点二级结构相变的方向. 物理学报, doi: 10.7498/aps.32.819
    [19] 冯若. 聚丙烯酰胺水溶液的超声研究. 物理学报, doi: 10.7498/aps.29.940
    [20] 唐明道. 聚丙烯腈与硝酸银络合后的热处理产物的红外光谱. 物理学报, doi: 10.7498/aps.19.830
计量
  • 文章访问数:  536
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-09-05
  • 修回日期:  2025-10-28
  • 上网日期:  2025-10-31

/

返回文章
返回