搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

硼氢化物的热中子散射机理研究

任文昭 宋红州 叶涛 郭海瑞 应阳君

引用本文:
Citation:

硼氢化物的热中子散射机理研究

任文昭, 宋红州, 叶涛, 郭海瑞, 应阳君

Investigation of Thermal Neutron Scattering Mechanisms in Borohydrides

REN Wenzhao, SONG Hongzhou, YE Tao, GUO Hairui, YING Yangjun
Article Text (iFLYTEK Translation)
PDF
导出引用
在线预览
  • 硼氢化物(XBH4,X=Li,Na,K)具有“元素协同”(硼吸收截面高、氢的慢化能力好)效应,可以视为良好的中子屏蔽材料。但是,目前国际评价数据库中缺少硼氢化物实验和评价热散射数据,不利于该材料的屏蔽和慢化性能评估。本文基于密度泛函的第一性原理计算了晶格参数、电子结构和声子态密度等材料性质,并研制了相应的S(α,β)数据和热中子散射截面。模拟得到的晶格参数与实验符合较好,对比了XBH4的电子结构和声子态密度,给出了硼氢化物中阳离子X、B、H对应的相干弹性散射截面、非相干弹性散射截面和非弹性散射截面,结果表明,由于阳离子X的不同,硼氢化物XBH4中各核素的热中子截面存在明显差异。为评估硼氢化物热散射数据对中子屏蔽效应的影响,本研究采用简化聚变源模型,使用OpenMC程序对比了不同物理模型下的泄漏中子能谱。结果显示,自由气体模型(FGM)由于忽略了晶格束缚效应,对中子的慢化能力描述不准确,此外,由于氢元素较大的非相干散射截面,各核素相干弹性散射截面对中子能谱的影响较小。本文的研究结果填补了硼氢化物热中子截面数据的缺失,为进一步研究硼氢化物作为中子屏蔽材料的应用奠定了基础。本文数据集可在科学数据银行数据库https://www.doi.org/10.57760/sciencedb.j00213.00219中访问(审稿阶段请通过私有访问链接查看本文数据集https://www.scidb.cn/s/3meuq2)。
    Borohydrides (XBH4, X = Li, Na, K) exhibit an ”elemental synergy” effect, characterized by the high neutron absorption cross-section of boron and the excellent moderation capability of hydrogen, making them promising candidates for neutron shielding materials. However, the current lack of experimental and evaluated thermal scattering data for borohydrides in international nuclear data libraries hinders the accurate assessment of their shielding and moderation performance.In this study, material properties including lattice parameters, electronic structures, and phonon densities of states were calculated based on first-principles density functional theory. Subsequently, the corresponding S(α, β) data and thermal neutron scattering cross-sections were developed. The simulated lattice parameters show good agreement with experimental data. By comparing the electronic structures and phonon densities of states of XBH4, the coherent elastic, incoherent elastic, and inelastic scattering cross-sections for the cations X, B, and H were obtained. The results indicate that the thermal neutron cross-sections of the constituent nuclides in XBH4 exhibit significant differences depending on the cation X.To evaluate the impact of thermal scattering data on neutron shielding effects, a simplified fusion source model was employed using the OpenMC code to compare the leaked neutron energy spectra under different physical models. The results demonstrate that the Free Gas Model (FGM) provides an inaccurate description of neutron moderation due to its neglect of lattice binding effects. Furthermore, owing to the large incoherent scattering cross-section of hydrogen, the coherent elastic scattering cross-sections of the various nuclides have a negligible impact on the neutron energy spectrum. This research fills the gap in thermal neutron cross-section data for borohydrides and establishes a foundation for further investigations into their application as neutron shielding materials. These findings partially fill the gap in thermal neutron cross-section data for borohydrides and lay a foundation for their future application as neutron shielding materials.The datasets presented in this paper, including the ScienceDB, are openly available at https://www.doi.org/10.57760/sciencedb.j00213.00219(Please use the private access link https://www.scidb.cn/s/3meuq2).
  • [1]

    Wormald J L, Hawari A I 2017 Prog. Nucl. Energy 101 461

    [2]

    Crozier J, Hawari A 2023 EPJ Web Conf. 284 17005

    [3]

    Chapman C W, Arbanas G, Brown J, Ramić K, Cheng Y Q, Lin J, Abernathy D L, Kolesnikov A I, Stone M B, Daemen L, Cuesta A R, Hu X X 2023 EPJ Web Conf. 284 17004

    [4]

    El Barbari M, El Bardouni T, El Yaakoubi H, Boulaich Y, Lahdour M, Ziani H, Berriban I 2022 Appl. Radiat. Isot. 187 110313

    [5]

    Romano P K, Nelson A G 2023 EPJ Web Conf. 284 17011

    [6]

    Zheng L, Feng Z Y, Wang K 2021 EPJ Web Conf. 247 09012

    [7]

    Filinchuk Y, Chernyshov D, Nevidomskyy A, Dmitriev V 2008 Angew. Chem. 120 539

    [8]

    Nakano S, Fujihisa H, Yamawaki H, Kikegawa T 2015 J. Phys. Chem. C 119 3911

    [9]

    Urgnani J, Torres F J, Palumbo M, Baricco M 2008 Int. J. Hydrogen Energy 33 3111

    [10]

    Kumar R S, Kim E, Cornelius A L 2008 J. Phys. Chem. C 112 8452

    [11]

    Lotfalian M, Allaf M A, Mansouri M 2024 arXiv:2406.03640v1 [physics.atm-clus]

    [12]

    Macfarlane R E, Muir D W, Boicourt R M, Kahler A C, Conlin J L, Haeck W 2017 The NJOY Nuclear Data Processing System, Version 2016 (Los Alamos: Los Alamos National Lab), pp 654–721

    [13]

    Ramić K, Damian J I M, Kittelmann T, Di Julio D D, Campi D, Bernasconi M, Gorini G, Santoro V 2022 Nucl. Instrum. Methods Phys. Res. A 1027 166227

    [14]

    Hawari A 2014 Nucl. Data Sheets 118 172

    [15]

    Zhang Z C, Hu J F, Chen J G, Cai X Z 2023 Nucl. Tech. 46 070605. (in Chinese) [张志成, 胡继峰, 陈金根, 蔡翔舟 2023 核技术 46 070605]

    [16]

    Wang L P, Jiang X B, Wu H C, Fan H Q 2018 Acta Phys. Sin. 67 290. (in Chinese) [王立鹏, 江新标, 吴宏春, 樊慧庆 2018 物理学报 67 290]

    [17]

    Vajeeston P, Ravindran P, Kjekshus A, Fjellvag H 2005 J. Alloys Compd. 387 97

    [18]

    Benzidi H, Garara M, Lakhal M, Abdalaoui M, Benyoussef A, Louilidi M, Hamedoun M, Mounkachi O 2018 Int. J. Hydrogen Energy 43 6625

    [19]

    Marizy A, Geneste G, Garbarino G, Loubeyre P 2021 RSC Adv. 11 25274

    [20]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169

    [21]

    Togo A, Chaput L, Tadano T, Tanaka I 2023 J. Phys.: Condens. Matter 35 353001

    [22]

    Wang V, Xu N, Liu J C, Tang G, Geng W T 2021 Comput. Phys. Commun. 267 108033

    [23]

    Mughabghab S F 2006 Atlas of Neutron Resonances: Resonance Parameters and Thermal Cross Sections. Z= 1-100, Fifth Edition (Amsterdam: Elsevier), pp 154–249

    [24]

    Soulié J P, Renaudin G, Cerný R, Yvon K 2002 J. Alloys Compd. 346 200

    [25]

    Kumar R S, Cornelius A L 2005 Appl. Phys. Lett. 87 261903

    [26]

    Abrahams S C, Kalnajs J 1954 J. Chem. Phys. 22 434

    [27]

    Tomaszewski P E 1992 Phase Transit. 38 127

    [28]

    Miwa K, Ohba N, Towata S, Nakamori Y, Orimo S 2004 Phys. Rev. B 69 245120

    [29]

    Araújo C M, Ahuja R, Talyzin A V, Sundqvist B 2005 Phys. Rev. B 72 054125

    [30]

    Wu D H, Wang H C, Shao L, Wei L T, Tang B Y 2015 Chem. Phys. Lett. 620 88

    [31]

    Wang X H, Zheng P, Liu R, Yang X F, Yang J 2011 Nucl. Tech. 34 750. (in Chinese) [王新华, 郑普, 刘荣, 杨小飞, 阳剑 2011 核技术 34 750]

  • [1] 马宇图, 祖铁军, 吴宏春, 曹良志. 亚化学计量金属氢化物热散射律数据计算分析. 物理学报, doi: 10.7498/aps.74.20250928
    [2] 王兰, 程思远, 曾航航, 谢聪伟, 龚元昊, 郑植, 范晓丽. CuBiI三元化合物晶体结构预测及光电性能第一性原理研究. 物理学报, doi: 10.7498/aps.70.20210145
    [3] 王立鹏, 江新标, 吴宏春, 樊慧庆. 氮化铀热中子截面的第一性原理计算. 物理学报, doi: 10.7498/aps.67.20180834
    [4] 严顺涛, 姜振益. Cu掺杂对TiNi合金马氏体相变路径影响的第一性原理研究. 物理学报, doi: 10.7498/aps.66.130501
    [5] 朱玥, 李永成, 王福合. Li掺杂对MgH2(001)表面H2分子扩散释放影响的第一性原理研究. 物理学报, doi: 10.7498/aps.65.056801
    [6] 蒋文灿, 陈华, 张伟斌. TATB晶体声子谱及比热容的第一性原理研究. 物理学报, doi: 10.7498/aps.65.126301
    [7] 马振宁, 蒋敏, 王磊. Mg-Y-Zn合金三元金属间化合物的电子结构及其相稳定性的第一性原理研究. 物理学报, doi: 10.7498/aps.64.187102
    [8] 路战胜, 李燕, 程莹洁, 李硕, 张喜林, 徐国亮, 杨宗献. 第一性原理研究O2在TiN4掺杂石墨烯上的氢化. 物理学报, doi: 10.7498/aps.64.216101
    [9] 李细莲, 刘刚, 杜桃园, 赵晶, 吴木生, 欧阳楚英, 徐波. 应力对硅烯上锂吸附的影响. 物理学报, doi: 10.7498/aps.63.217101
    [10] 赵立凯, 赵二俊, 武志坚. 5d过渡金属二硼化物的结构和热、力学性质的第一性原理计算. 物理学报, doi: 10.7498/aps.62.046201
    [11] 胡洁琼, 谢明, 张吉明, 刘满门, 杨有才, 陈永泰. Au-Sn金属间化合物的第一性原理研究. 物理学报, doi: 10.7498/aps.62.247102
    [12] 代云雅, 杨莉, 彭述明, 龙兴贵, 周晓松, 祖小涛. 金属氢化物力学性能的第一性原理研究. 物理学报, doi: 10.7498/aps.61.108801
    [13] 周大伟, 卢成, 李根全, 宋金璠, 宋玉玲, 包刚. 高压下金属Ba的结构稳定性以及热动力学的第一原理研究. 物理学报, doi: 10.7498/aps.61.146301
    [14] 程志梅, 王新强, 王风, 鲁丽娅, 刘高斌, 段壮芬, 聂招秀. 三元化合物ZnCrS2电子结构和半金属铁磁性的第一性原理研究. 物理学报, doi: 10.7498/aps.60.096301
    [15] 刘凤丽, 蒋刚, 白丽娜, 孔凡杰. Bi2Te3-xSex(x≤3)同晶化合物电子结构的第一性原理研究. 物理学报, doi: 10.7498/aps.60.037104
    [16] 王风, 王新强, 聂招秀, 程志梅, 刘高斌. 三元化合物ZnVSe2半金属铁磁性的第一性原理计算. 物理学报, doi: 10.7498/aps.60.046301
    [17] 刘春华, 欧阳楚英, 嵇英华. 第一性原理计算Mg2Ni氢化物的电子结构及其稳定性分析. 物理学报, doi: 10.7498/aps.60.077103
    [18] 孙伟峰, 李美成, 赵连城. Ga和Sb纳米线声子结构和电子-声子相互作用的第一性原理研究. 物理学报, doi: 10.7498/aps.59.7291
    [19] 肖 杨, 颜晓红, 曹觉先, 丁建文. 单壁纳米碳管的声子谱研究. 物理学报, doi: 10.7498/aps.52.1720
    [20] 李 泌. 铁的原子间相互作用及声子谱. 物理学报, doi: 10.7498/aps.49.1692
计量
  • 文章访问数:  29
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-12-30

/

返回文章
返回