-
共价有机框架(Covalent Organic Framework,COF)因其高度有序的多孔结构、优异的分子吸附能力和结构稳定性,被认为是一类具有潜力的表面增强拉曼散射(Surface-Enhanced RamanScattering,SERS)基底。然而,传统COF材料因缺乏等离激元特性而难以实现高强度的拉曼增强效应,从而限制了其在高灵敏检测中的应用。为此,本研究设计并制备了一种新型钌基共价有机框架复合材料(Ru-COF),用于构建高性能SERS活性基底。通过将钌配合物直接引入COF骨架,形成稳定的Ru–N/O共价配位结构,有效提高了钌的负载量和分散性,显著增强了基底的电磁场耦合强度和电子传输能力。与纯COF相比,Ru-COF基底在检测亚甲基蓝(Methylene Blue,MB)分子时表现出优异的SERS响应性能,其检测限(LOD)低至10-12mol·L 1,线性相关系数R2 ≥ 0.99,增强因子(EF)高达1.83×1010,信号重现性良好(RSD <5%) ,并在空气中暴露四个月后仍保持超过90%的初始信号强度,显示出极佳的稳定性与耐久性。进一步的应用研究表明,Ru-COF基底在复杂水样中依然能够实现对痕量亚甲基蓝分子的稳定检测,检测限仍维持在10-12 mol·L-1量级,且具有优异的抗离子干扰与信号一致性。这说明该基底不仅在标准条件下表现出卓越的灵敏度和重现性,也具备在真实环境样品中进行高灵敏定量检测的潜力。该材料的设计思路为金属–有机协同增强型SERS体系提供了新的研究方向,并为其在环境污染物检测、食品安全分析及临床诊断等领域的实际应用奠定了重要基础。Covalent Organic Frameworks (COFs) are regarded as aclassofpromising Surface-Enhanced Raman Scattering (SERS) substrates, owing to their highly ordered porous structure, excellent molecular adsorption capacity, and structural stability have attracted widely attention. However, traditional COF materials lack plasmonic properties, making it difficult to achieve a high-intensity Raman enhancement effect, which limits their applicationin high-sensitivity detection. To address this issue, a novel ruthenium-based covalent was choosen. Organic framework composite material (Ru-COF) was designed and fabricated in this study for constructing high-performance SERS-active substrates. By directly incorporating ruthenium complexes into the COF skeleton, astable Ru–N/Ocovalent coordination structure was formed, which effectively improved the loading capacity and dispersibility of ruthenium, while significantly enhancing the electromagnetic field coupling strength and electron transfer capability ofthesubstrate.Compared with pure COFs, the Ru-COF substrate exhibited excellentSERS response performance in the detection of MethyleneBlue (MB) molecules. Specifically,it achieved a low limit ofdetection (LOD) down to10 12 mol·L 1,alinearcorrelation coefficient (R2) ofno less than 0.99, and a high enhancement factor (EF) of up to 1.83×101. Additionally, the substrate showed good signal reproducibility(relative standard deviation, RSD < 5%) and retained over 90% o its initial signal intensity even after exposure to air for four months, demonstrating outstanding stability and durability. Further application studies indicated that the Ru-COF substrate could still realize stable detection of trace MB molecules in complex water samples, with the LOD remaining at the1012 mol·L1 level, along with excellent anti-ioninterference ability and signal consistency. This suggests that the substrate notonlyexhibits exceptional sensitivity and reproducibility under standard conditions but also holds potential for high-sensitivity quantitative detection in real environmental samples.The designstrategyofthismaterialprovidesanewresearchdirectionformetal-organic synergistically enhanced SERS systems and lays a crucial foundation for their practical applications in fields such as environmental pollutant detection,foodsafety analysis, and clinical diagnosis.
-
Keywords:
- Surface-Enhanced Raman Scattering (SERS) /
- Covalent Organic Frame work (COF) /
- Ruthenium-based composite /
- High-sensitivity detection /
- Stability
-
[1] Itoh T, Procházka M, Dong Z-C, Ji W, Yamamoto Y S, Zhang Y, Ozaki Y 2023 Chem. Rev.123 1552-1634
[2] Cialla-May D, Bonifacio A, Bocklitz T, Markin A, Markina N, Fornasaro S, Dwivedi A, Dib T, Farnesi E, Liu C, Ghosh A, Popp J 2024 Chem. Soc. Rev.53 8957-8979
[3] Lee S, Dang H, Moon J-I, Kim K, Joung Y, Park S, Yu Q, Chen J, Lu M, Chen L, Joo S-W, Choo J 2024 Chem. Soc. Rev.53 5394-5427
[4] Zhang W, Peng Y, Lin C, Xu M, Zhao S, Li D, Yang Y, Yang Y 2024 Chem. Eng. J.502 157907
[5] Xie Y, Chen L, Cui K, Zeng Y, Luo X, Deng X 2024 Talanta279 126547
[6] Hassanain W A, Johnson C L, Faulds K, Graham D, Keegan N 2022 Analyst147 4674-4700
[7] Xu H, Zhang Y, Wang Z, Jia Y, Yang X, Gao M 2024 J. Colloid Interface Sci.660 42-51
[8] Cao Y, Zhang J, Yang Y, Huang Z, Long N V, Fu C 2015 Appl. Spectrosc. Rev.50 499-525
[9] Cong S, Yuan Y, Chen Z, Hou J, Yang M, Su Y, Zhang Y, Li L, Li Q, Geng F, Zhao Z 2015 Nat. Commun.6 7800
[10] Kaushik A, Kapoor S, Senapati S, Singh J P 2025 Colloids Surf. B. Biointerfaces252 114676
[11] Zheng L-Q, Shi S-H, Li J-Z, Wang Z-Y, Li S 2023 Acta Physica Sinica72 227401-227401-227401-227412
[12] Liu L-S, Chou X-J, Chen T, Sun L-N 2016 Acta Physica Sinica65 197301-197301
[13] Yang T, Zhang Y, Jia Y, Xu H, Li J, Liu H, Gao M 2024 Int. J. Hydrogen Energy51 703-712
[14] Cai J, Liu R, Jia S, Feng Z, Lin L, Zheng Z, Wu S, Wang Z 2021 Opt. Mater.122 111779
[15] He H, Yang M, Yu Y, Wang A, Mao J, Shu R, kuang Z, Su Y, Li L, Zhu J 2025 J. Mater. Sci.60 6601-6610
[16] Guselnikova O, Lim H, Kim H-J, Kim S H, Gorbunova A, Eguchi M, Postnikov P, Nakanishi T, Asahi T, Na J, Yamauchi Y 2022 Small18 2107182
[17] Yang Y, Li G, Wang P, Fan L, Shi Y 2022 Talanta243 123369
[18] Shang Y, Hu A, Ma C, Gu J, Wu Y, Zhu C, Li L, Gao H, Yang T, Chen G 2025 Food Analytical Methods18 2165-2174
[19] Liu X-Y, Li X-F, Yu J-X, Li X-D 2016 Acta Physica Sinica65 157302-157302
[20] Su R, Li S, Su Y, Wang Z, Gao M 2024 Food Chem.461 140843
[21] Xu H, Li B, Meng X, Chang X, Gao M 2025 ACS Applied Nano Materials8 1173-1183
[22] Li P, Chen J, Xie Y, Wu C, Zhao Y, Luo X 2026 Talanta297 128737
[23] Maiti S, Chowdhury A R, Das A K 2020 ChemNanoMat6 99-106
[24] Jia H, Yao N, Jin Y, Wu L, Zhu J, Luo W 2024 Nat. Commun.15 5419
[25] Yang Z, Ma C, Gu J, Wu Y, Zhu C, Li L, Gao H, Yin W, Wang Z, Chen G 2023 Food Chem.401 134078
[26] Yang Y, Jiang H, Li J, Zhang J, Gao S-Z, Lu M-L, Zhang X-Y, Liang W, Zou X, Yuan R, Xiao D-R 2023 Materials Horizons10 3005-3013
[27] Yang Y, Sandra A P, Idström A, Schäfer C, Andersson M, Evenäs L, Börjesson K 2022 J. Am. Chem. Soc.144 16093-16100
[28] Yang Z, Chen G, Shen J, Ma C, Gu J, Zhu C, Li L, Gao H 2023 Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy299 122834
[29] Rabbani M G, Sekizkardes A K, El-Kadri O M, Kaafarani B R, El-Kaderi H M 2012 J. Mater. Chem.22 25409-25417
[30] Zhang Y, Yang T, Li J, Zhang Q, Li B, Gao M 2023 Adv. Funct. Mater.33 2210939
[31] Zhang Y, Xu H, Jia Y, Yang T, Li J, Gao M, Yang X 2024 Appl. Surf. Sci.644 158767
[32] Zhang Y, Jia Y, Xu H, Song Y, Gao M, Wang Z, Yang X 2024 Int. J. Hydrogen Energy69 1386-1393
[33] Jia Y, Zhang Y, Xu H, Li J, Gao M, Yang X 2024 ACS Catal.14 4601-4637
[34] Jia Y, Xu H, Li B, Chang X, Yang X, Wang Z, Gao M 2025 Food Chem.488 144835
[35] Zhang Y, Xu H, Jia Y, Yang X, Gao M 2024 J. Hazard. Mater.472 134524
[36] Kumar G, Pillai R S, Khan N-u H, Neogi S 2021 Applied Catalysis B: Environmental292 120149
[37] Jiang L, Xiong S, Yang S, Han D, Liu Y, Yang J, Gao M 2023 Ceram. Int.49 19328-19337
[38] Li C, Wu C, Zhang K, Chen M, Wang Y, Shi J, Tang Z 2021 New J. Chem.45 19775-19786
[39] Shaikh I, Haque M A, Pathan H, Sartale S 2022 Plasmonics17 1889-1900
[40] Zheng Z, Wang J, Ma M, Xu Y, Huang D, Wang J, Lin C, Lin Z, Luo F 2025 Sensors Actuators B: Chem.444 138456
计量
- 文章访问数: 7
- PDF下载量: 1
- 被引次数: 0








下载: