搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钌基共价有机框架(Ru-COF)复合材料的构建及其表面增强拉曼散射性能研究

姜龙 冯博

引用本文:
Citation:

钌基共价有机框架(Ru-COF)复合材料的构建及其表面增强拉曼散射性能研究

姜龙, 冯博

Construction of Ruthenium-Based Covalent Organic Framework (Ru-COF) Composites and Their Surface-Enhanced Raman Scattering (SERS) Performance

Jia Long, Feng Bo
Article Text (iFLYTEK Translation)
PDF
导出引用
在线预览
  • 共价有机框架(Covalent Organic Framework,COF)因其高度有序的多孔结构、优异的分子吸附能力和结构稳定性,被认为是一类具有潜力的表面增强拉曼散射(Surface-Enhanced RamanScattering,SERS)基底。然而,传统COF材料因缺乏等离激元特性而难以实现高强度的拉曼增强效应,从而限制了其在高灵敏检测中的应用。为此,本研究设计并制备了一种新型钌基共价有机框架复合材料(Ru-COF),用于构建高性能SERS活性基底。通过将钌配合物直接引入COF骨架,形成稳定的Ru–N/O共价配位结构,有效提高了钌的负载量和分散性,显著增强了基底的电磁场耦合强度和电子传输能力。与纯COF相比,Ru-COF基底在检测亚甲基蓝(Methylene Blue,MB)分子时表现出优异的SERS响应性能,其检测限(LOD)低至10-12mol·L 1,线性相关系数R2 ≥ 0.99,增强因子(EF)高达1.83×1010,信号重现性良好(RSD <5%) ,并在空气中暴露四个月后仍保持超过90%的初始信号强度,显示出极佳的稳定性与耐久性。进一步的应用研究表明,Ru-COF基底在复杂水样中依然能够实现对痕量亚甲基蓝分子的稳定检测,检测限仍维持在10-12 mol·L-1量级,且具有优异的抗离子干扰与信号一致性。这说明该基底不仅在标准条件下表现出卓越的灵敏度和重现性,也具备在真实环境样品中进行高灵敏定量检测的潜力。该材料的设计思路为金属–有机协同增强型SERS体系提供了新的研究方向,并为其在环境污染物检测、食品安全分析及临床诊断等领域的实际应用奠定了重要基础。
    Covalent Organic Frameworks (COFs) are regarded as aclassofpromising Surface-Enhanced Raman Scattering (SERS) substrates, owing to their highly ordered porous structure, excellent molecular adsorption capacity, and structural stability have attracted widely attention. However, traditional COF materials lack plasmonic properties, making it difficult to achieve a high-intensity Raman enhancement effect, which limits their applicationin high-sensitivity detection. To address this issue, a novel ruthenium-based covalent was choosen. Organic framework composite material (Ru-COF) was designed and fabricated in this study for constructing high-performance SERS-active substrates. By directly incorporating ruthenium complexes into the COF skeleton, astable Ru–N/Ocovalent coordination structure was formed, which effectively improved the loading capacity and dispersibility of ruthenium, while significantly enhancing the electromagnetic field coupling strength and electron transfer capability ofthesubstrate.Compared with pure COFs, the Ru-COF substrate exhibited excellentSERS response performance in the detection of MethyleneBlue (MB) molecules. Specifically,it achieved a low limit ofdetection (LOD) down to10 12 mol·L 1,alinearcorrelation coefficient (R2) ofno less than 0.99, and a high enhancement factor (EF) of up to 1.83×101. Additionally, the substrate showed good signal reproducibility(relative standard deviation, RSD < 5%) and retained over 90% o its initial signal intensity even after exposure to air for four months, demonstrating outstanding stability and durability. Further application studies indicated that the Ru-COF substrate could still realize stable detection of trace MB molecules in complex water samples, with the LOD remaining at the1012 mol·L1 level, along with excellent anti-ioninterference ability and signal consistency. This suggests that the substrate notonlyexhibits exceptional sensitivity and reproducibility under standard conditions but also holds potential for high-sensitivity quantitative detection in real environmental samples.The designstrategyofthismaterialprovidesanewresearchdirectionformetal-organic synergistically enhanced SERS systems and lays a crucial foundation for their practical applications in fields such as environmental pollutant detection,foodsafety analysis, and clinical diagnosis.
  • [1]

    Itoh T, Procházka M, Dong Z-C, Ji W, Yamamoto Y S, Zhang Y, Ozaki Y 2023 Chem. Rev.123 1552-1634

    [2]

    Cialla-May D, Bonifacio A, Bocklitz T, Markin A, Markina N, Fornasaro S, Dwivedi A, Dib T, Farnesi E, Liu C, Ghosh A, Popp J 2024 Chem. Soc. Rev.53 8957-8979

    [3]

    Lee S, Dang H, Moon J-I, Kim K, Joung Y, Park S, Yu Q, Chen J, Lu M, Chen L, Joo S-W, Choo J 2024 Chem. Soc. Rev.53 5394-5427

    [4]

    Zhang W, Peng Y, Lin C, Xu M, Zhao S, Li D, Yang Y, Yang Y 2024 Chem. Eng. J.502 157907

    [5]

    Xie Y, Chen L, Cui K, Zeng Y, Luo X, Deng X 2024 Talanta279 126547

    [6]

    Hassanain W A, Johnson C L, Faulds K, Graham D, Keegan N 2022 Analyst147 4674-4700

    [7]

    Xu H, Zhang Y, Wang Z, Jia Y, Yang X, Gao M 2024 J. Colloid Interface Sci.660 42-51

    [8]

    Cao Y, Zhang J, Yang Y, Huang Z, Long N V, Fu C 2015 Appl. Spectrosc. Rev.50 499-525

    [9]

    Cong S, Yuan Y, Chen Z, Hou J, Yang M, Su Y, Zhang Y, Li L, Li Q, Geng F, Zhao Z 2015 Nat. Commun.6 7800

    [10]

    Kaushik A, Kapoor S, Senapati S, Singh J P 2025 Colloids Surf. B. Biointerfaces252 114676

    [11]

    Zheng L-Q, Shi S-H, Li J-Z, Wang Z-Y, Li S 2023 Acta Physica Sinica72 227401-227401-227401-227412

    [12]

    Liu L-S, Chou X-J, Chen T, Sun L-N 2016 Acta Physica Sinica65 197301-197301

    [13]

    Yang T, Zhang Y, Jia Y, Xu H, Li J, Liu H, Gao M 2024 Int. J. Hydrogen Energy51 703-712

    [14]

    Cai J, Liu R, Jia S, Feng Z, Lin L, Zheng Z, Wu S, Wang Z 2021 Opt. Mater.122 111779

    [15]

    He H, Yang M, Yu Y, Wang A, Mao J, Shu R, kuang Z, Su Y, Li L, Zhu J 2025 J. Mater. Sci.60 6601-6610

    [16]

    Guselnikova O, Lim H, Kim H-J, Kim S H, Gorbunova A, Eguchi M, Postnikov P, Nakanishi T, Asahi T, Na J, Yamauchi Y 2022 Small18 2107182

    [17]

    Yang Y, Li G, Wang P, Fan L, Shi Y 2022 Talanta243 123369

    [18]

    Shang Y, Hu A, Ma C, Gu J, Wu Y, Zhu C, Li L, Gao H, Yang T, Chen G 2025 Food Analytical Methods18 2165-2174

    [19]

    Liu X-Y, Li X-F, Yu J-X, Li X-D 2016 Acta Physica Sinica65 157302-157302

    [20]

    Su R, Li S, Su Y, Wang Z, Gao M 2024 Food Chem.461 140843

    [21]

    Xu H, Li B, Meng X, Chang X, Gao M 2025 ACS Applied Nano Materials8 1173-1183

    [22]

    Li P, Chen J, Xie Y, Wu C, Zhao Y, Luo X 2026 Talanta297 128737

    [23]

    Maiti S, Chowdhury A R, Das A K 2020 ChemNanoMat6 99-106

    [24]

    Jia H, Yao N, Jin Y, Wu L, Zhu J, Luo W 2024 Nat. Commun.15 5419

    [25]

    Yang Z, Ma C, Gu J, Wu Y, Zhu C, Li L, Gao H, Yin W, Wang Z, Chen G 2023 Food Chem.401 134078

    [26]

    Yang Y, Jiang H, Li J, Zhang J, Gao S-Z, Lu M-L, Zhang X-Y, Liang W, Zou X, Yuan R, Xiao D-R 2023 Materials Horizons10 3005-3013

    [27]

    Yang Y, Sandra A P, Idström A, Schäfer C, Andersson M, Evenäs L, Börjesson K 2022 J. Am. Chem. Soc.144 16093-16100

    [28]

    Yang Z, Chen G, Shen J, Ma C, Gu J, Zhu C, Li L, Gao H 2023 Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy299 122834

    [29]

    Rabbani M G, Sekizkardes A K, El-Kadri O M, Kaafarani B R, El-Kaderi H M 2012 J. Mater. Chem.22 25409-25417

    [30]

    Zhang Y, Yang T, Li J, Zhang Q, Li B, Gao M 2023 Adv. Funct. Mater.33 2210939

    [31]

    Zhang Y, Xu H, Jia Y, Yang T, Li J, Gao M, Yang X 2024 Appl. Surf. Sci.644 158767

    [32]

    Zhang Y, Jia Y, Xu H, Song Y, Gao M, Wang Z, Yang X 2024 Int. J. Hydrogen Energy69 1386-1393

    [33]

    Jia Y, Zhang Y, Xu H, Li J, Gao M, Yang X 2024 ACS Catal.14 4601-4637

    [34]

    Jia Y, Xu H, Li B, Chang X, Yang X, Wang Z, Gao M 2025 Food Chem.488 144835

    [35]

    Zhang Y, Xu H, Jia Y, Yang X, Gao M 2024 J. Hazard. Mater.472 134524

    [36]

    Kumar G, Pillai R S, Khan N-u H, Neogi S 2021 Applied Catalysis B: Environmental292 120149

    [37]

    Jiang L, Xiong S, Yang S, Han D, Liu Y, Yang J, Gao M 2023 Ceram. Int.49 19328-19337

    [38]

    Li C, Wu C, Zhang K, Chen M, Wang Y, Shi J, Tang Z 2021 New J. Chem.45 19775-19786

    [39]

    Shaikh I, Haque M A, Pathan H, Sartale S 2022 Plasmonics17 1889-1900

    [40]

    Zheng Z, Wang J, Ma M, Xu Y, Huang D, Wang J, Lin C, Lin Z, Luo F 2025 Sensors Actuators B: Chem.444 138456

  • [1] 靳帆, 赵志超. 供体构筑单元改性调控共价有机框架的电光学特性. 物理学报, doi: 10.7498/aps.75.20251264
    [2] 温景浩, 李晨辉, 涂国华, 万兵兵, 段茂昌, 张锐. 高温化学非平衡与表面微孔隙效应对边界层稳定性影响. 物理学报, doi: 10.7498/aps.74.20250269
    [3] 张照威, 王燕云, 樊海明, 经光银. 表面纳米气泡的稳定性机制. 物理学报, doi: 10.7498/aps.74.20250521
    [4] 王静, 高姗, 段香梅, 尹万健. 钙钛矿太阳能电池材料缺陷对器件性能与稳定性的影响. 物理学报, doi: 10.7498/aps.73.20231631
    [5] 刘文英, 王公堂, 段鹏怡, 张文杰, 张灿, 胡晓璇, 刘玫. F4TCNQ/MoS2纳米复合异质材料的表面结构对SERS的影响. 物理学报, doi: 10.7498/aps.72.20221958
    [6] 厉桂华, 张梦雅, 马慧, 田悦, 焦安欣, 郑林启, 王畅, 陈明, 刘向东, 李爽, 崔清强, 李冠华. 低温促进表面等离激元共振效应及肌酐的超灵敏表面增强拉曼散射探测. 物理学报, doi: 10.7498/aps.71.20220151
    [7] 赵星, 郝祺, 倪振华, 邱腾. 单分子表面增强拉曼散射的光谱特性及分析方法. 物理学报, doi: 10.7498/aps.70.20201447
    [8] 颜佳豪, 陈思璇, 杨建斌, 董敬敬. 吸收层离子掺杂提高有机无机杂化钙钛矿太阳能电池效率及稳定性. 物理学报, doi: 10.7498/aps.70.20210836
    [9] 吴美梅, 张超, 张灿, 孙倩倩, 刘玫. 三维金字塔立体复合基底表面增强拉曼散射特性. 物理学报, doi: 10.7498/aps.69.20191636
    [10] 秦康, 袁列荣, 谭骏, 彭胜, 王前进, 张学进, 陆延青, 朱永元. 金属亚波长结构的表面增强拉曼散射. 物理学报, doi: 10.7498/aps.68.20190458
    [11] 王向贤, 白雪琳, 庞志远, 杨华, 祁云平, 温晓镭. 聚甲基丙烯酸甲酯间隔的金纳米立方体与金膜复合结构的表面增强拉曼散射研究. 物理学报, doi: 10.7498/aps.68.20190054
    [12] 李金华, 张思楠, 翟英娇, 马剑刚, 房文汇, 张昱. MoS2及其金属复合表面增强拉曼散射基底的发展及应用. 物理学报, doi: 10.7498/aps.68.20182113
    [13] 程自强, 石海泉, 余萍, 刘志敏. 银纳米颗粒阵列的表面增强拉曼散射效应研究. 物理学报, doi: 10.7498/aps.67.20180650
    [14] 高星辉, 唐冬, 张承云, 郑晖, 陆大全, 胡巍. 非局域表面暗孤子及其稳定性分析. 物理学报, doi: 10.7498/aps.63.024204
    [15] 汤建, 刘爱萍, 李培刚, 沈静琴, 唐为华. 界面自组装的金/氧化石墨烯复合材料的表面增强拉曼散射行为研究. 物理学报, doi: 10.7498/aps.63.107801
    [16] 黄茜, 熊绍珍, 赵颖, 张晓丹. 表面等离子激元非线性表面增强拉曼散射效应. 物理学报, doi: 10.7498/aps.61.157801
    [17] 张新稳, 胡琦. 有机电致发光器件的稳定性. 物理学报, doi: 10.7498/aps.61.207802
    [18] 黄茜, 王京, 曹丽冉, 孙建, 张晓丹, 耿卫东, 熊绍珍, 赵颖. 纳米Ag材料表面等离子体激元引起的表面增强拉曼散射光谱研究. 物理学报, doi: 10.7498/aps.58.1980
    [19] 王 岩, 韩晓艳, 任慧志, 侯国付, 郭群超, 朱 锋, 张德坤, 孙 建, 薛俊明, 赵 颖, 耿新华. 相变域硅薄膜材料的光稳定性. 物理学报, doi: 10.7498/aps.55.947
    [20] 刘红军, 陈国夫, 赵卫, 王屹山. 高质量高效率高稳定性参量放大光产生的研究. 物理学报, doi: 10.7498/aps.53.105
计量
  • 文章访问数:  7
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 上网日期:  2025-11-12

/

返回文章
返回