搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

量子电池的研究进展

王璐 吴风霖 李娜娜 郭森炎 樊浩 刘树倩 刘思远

引用本文:
Citation:

量子电池的研究进展

王璐, 吴风霖, 李娜娜, 郭森炎, 樊浩, 刘树倩, 刘思远

Research Progress of Quantum Battery

WANG Lu, WU Fenglin, LI Nana, GUO Senyan, FAN Hao, LIU Shuqian, LIU Siyuan
Article Text (iFLYTEK Translation)
PDF
导出引用
在线预览
  • 量子电池是一种基于量子力学原理设计的新型储能装置,旨在克服传统电化学电池在能量密度、充电速度和效率等方面的性能极限。本综述系统梳理了该领域近年来在理论和实验方面的研究进展,重点阐述了其理论框架和核心物理机制,包括量子纠缠和量子相干在能量存储、传输与提取过程中的关键作用。同时,回顾了现有的量子多体电池模型及其开放系统特性中的关键问题,探讨了远距离无线充电的实现路径和发展前景,并介绍了具有潜力的实验实现平台。量子电池研究处于快速发展阶段,其成果不仅对下一代高性能储能技术具有潜在变革性意义,也为量子热力学和量子资源理论提供了重要的实验验证平台。
    Quantum battery is a new energy storage concept designed based on the principles of quantum mechanics, aimed at overcoming the physical limitations of traditional electrochemical batteries in terms of energy density, charging speed, and efficiency. This review provides a comprehensive synthesis of recent theoretical and experimental progress in the field, emphasizing the underlying theoretical framework and the core physical mechanisms that govern energy storage, transport, and extraction. Central attention is given to the essential roles of quantum coherence and entanglement in enhancing charging performance and enabling collective phenomena. The thermodynamic foundations of quantum batteries are introduced, including stored energy, ergotropy, capacity, power, and energy fluctuations. The review then examines the structural characteristics and charging behaviors of several representative quantum battery models in depth, including light-matter interaction batteries based on the Tavis-Cummings or Dicke framework, spin-chain batteries with various interaction types, high-dimensional (three-level and multi-level) batteries employing adiabatic and shortcut-to-adiabatic control, as well as Rydberg-atom-based batteries featuring switchable strong long-range interactions. For each model, the influence of initial states, coupling strength, system size, and excitation distribution on charging dynamics, capacity, and power scaling is systematically discussed. Furthermore, key challenges faced by quantum many-body battery models in realistic environments are reviewed, particularly in relation to their open-system characteristics. We summarize recent advances in understanding how decoherence, dissipation, and environmental noise degrade battery performance, while highlighting how non-Markovian memory effects can stabilize energy flow or partially restore lost coherence. Measurement-based feedback control, dissipative engineering, and decoherence-free subspace techniques are introduced as promising strategies to suppress decoherence, mitigate self-discharge, and extend battery lifetime. The potential quantum advantages in self-discharge suppression, energy retention, and anti-aging mechanisms are also examined. Finally, the review explores feasible implementation routes toward long-distance or wireless quantum charging, and surveys experimental platforms capable of realizing quantum batteries, including superconducting circuits, trapped ions, cavity-QED systems, optomechanical devices, and Rydberg arrays. Overall, quantum battery research is undergoing rapid expansion, and its progress not only promises transformative innovations in next-generation energy storage technologies, but also provides a powerful experimental platform for advancing quantum thermodynamics, quantum resource theory, and the physics of nonequilibrium quantum systems.
  • [1]

    Alicki R, Fannes M 2013 Phys. Rev. E 87 042123

    [2]

    Campaioli F, Gherardini S, Quach J Q, Polini M, Andolina G M 2024 Rev. Mod. Phys. 96 031001

    [3]

    Zhang J L, Wang P F, Chen W T, Cai Z Y, Qiao M, Li R L, Huang Y Y, Tian H N, Luan C Y, Tu H C, Cui K F, Yan L L, Zhang J H, Zhang J N, Yung M, Kim K 2025 Phys. Rev. Lett. 135 140403

    [4]

    Song W L, Wang J L, Zhou B, Yang W L, An J H 2025 Phys. Rev. Lett. 135 020405

    [5]

    Andolina G M, Stanzione V, Giovannetti V, Polini M 2025 Phys. Rev. Lett. 134 240403

    [6]

    Medina I, Culhane O, Binder F C, Landi G T, Goold J 2025 Phys. Rev. Lett. 134 220402

    [7]

    Pokhrel S, Gea-Banacloche J 2025 Phys. Rev. Lett. 134 130401

    [8]

    Elyasi S N, Rossi M A, Genoni M G 2025 Quantum Sci. Technol. 10 025017

    [9]

    Hymas K, Muir J B, Tibben D, van Embden J, Hirai T, Dunn C J, Gómez D E, Hutchison J A, Smith T A, Quach J Q 2025 arXiv: 2501.16541 [quant-ph]

    [10]

    Rinaldi D, Filip R, Gerace D, Guarnieri G 2025 Phys. Rev. A 112 012205

    [11]

    Shaghaghi V, Singh V, Carrega M, Rosa D, Benenti G 2023 Entropy 25 430

    [12]

    Wang L, Liu S Q, Wu F L, Fan H, Liu S Y 2024 Phys. Rev. A 110 042419

    [13]

    Grazi R, Sacco Shaikh D, Sassetti M, Traverso Ziani N, Ferraro D 2024 Phys. Rev. Lett. 133 197001

    [14]

    Rossini D, Andolina G M, Polini M 2019 Phys. Rev. B 100 115142

    [15]

    Le T P, Levinsen J, Modi K, Parish M M, Pollock F A 2018 Phys. Rev. A 97 022106

    [16]

    Binder F C, Vinjanampathy S, Modi K, Goold J 2015 New J. Phys. 17 075015

    [17]

    Campbell S, Deffner S 2017 Phys. Rev. Lett. 118 100601

    [18]

    Rosa D, Rossini D, Andolina G M, Polini M, Carrega M 2020 J. High Energy Phys. 2020 1

    [19]

    Rossini D, Andolina G M, Rosa D, Carrega M, Polini M 2020 Phys. Rev. Lett. 125 236402

    [20]

    Andolina G M, Farina D, Mari A, Pellegrini V, Giovannetti V, Polini M 2018 Phys. Rev. B 98 205423

    [21]

    Ferraro D, Campisi M, Andolina G M, Pellegrini V, Polini M 2018 Phys. Rev. Lett. 120 117702

    [22]

    Andolina G M, Keck M, Mari A, Campisi M, Giovannetti V, Polini M 2019 Phys. Rev. Lett. 122 047702

    [23]

    Farina D, Andolina G M, Mari A, Polini M, Giovannetti V 2019 Phys. Rev. B 99 035421

    [24]

    Crescente A, Carrega M, Sassetti M, Ferraro D 2020 Phys. Rev. B 102 245407

    [25]

    Delmonte A, Crescente A, Carrega M, Ferraro D, Sassetti M 2021 Entropy 23 612

    [26]

    Wang L, Liu S Q, Wu F L, Fan H, Liu S Y 2023 Phys. Rev. A 108 062402

    [27]

    Liu J X, Shi H L, Shi Y H, Wang X H, Yang W L 2021 Phys. Rev. B 104 245418

    [28]

    Verma D, Indrajith V, Sankaranarayanan R 2025 Physica A 659 130352

    [29]

    Ghosh S, Sen A 2022 Phys. Rev. A 105 022628

    [30]

    Rossini D, Andolina G M, Rosa D, Carrega M, Polini M 2020 Phys. Rev. Lett. 125 236402

    [31]

    Francica G 2024 Phys. Rev. A 110 062209

    [32]

    Gangwar K, Pathak A 2024 Adv. Quantum Technol. 7 2400069

    [33]

    Rodriguez R, Ahmadi B, Suárez G, Mazurek P, Barzanjeh S, Horodecki P 2024 New J. Phys. 26 043004

    [34]

    Rodriguez R R, Ahmadi B, Mazurek P, Barzanjeh S, Alicki R, Horodecki P 2023 Phys. Rev. A 107 042419

    [35]

    Hu C K, Qiu J W, Souza P J P, Yuan J H, Zhou Y X, Zhang L B, Chu J, Pan X C, Hu L, Li J, Xu Y, Zhong Y P, Liu S, Yan F, Tan D, Bachelard R, Villas-Boas C J, Santos A C, Yu D P 2022 Quantum Sci. Technol. 7 045018

    [36]

    Ge Y, Yu X, Xin W, Wang Z, Zhang Y, Zheng W, Li S, Lan D, Yu Y 2023 Appl. Phys. Lett. 123 154002

    [37]

    Elghaayda S, Ali A, Al-Kuwari S, Czerwinski A, Mansour M, Haddadi S 2025 Adv. Quantum Technol. 2400651

    [38]

    Dou F Q, Yang F M 2023 Phys. Rev. A 107 023725

    [39]

    Yang D L, Yang F M, Dou F Q 2024 Phys. Rev. B 109 235432

    [40]

    Dou F Q, Wang Y J, Sun J A 2020 Eur. Phys. Lett. 131 43001

    [41]

    Dou F Q, Wang Y J, Sun J A 2022 Front. Phys. 17 31503

    [42]

    Gemme G, Grossi M, Vallecorsa S, Sassetti M, Ferraro D 2024 Phys. Rev. Res. 6 023091

    [43]

    Yang F M, Dou F Q 2024 Phys. Rev. A 109 062432

    [44]

    Lu Z G, Tian G, Lü X Y, Shang C 2025 Phys. Rev. Lett. 134 180401

    [45]

    Patil V P, Kos Z, Ravnik M, Dunkel J 2020 Phys. Rev. Res. 2 043196

    [46]

    Wang L, Liu S Q, Wu F L, Fan H, Liu S Y 2024 Phys. Rev. A 110 062204

    [47]

    Shokri A, Faizi E, Arjmandi M B 2025 Phys. Rev. E 111 064117

    [48]

    Guo Y, Cao L, Zhao J 2025 Phys. Rev. A 111 063520

    [49]

    Joshi J, Mahesh T 2022 Phys. Rev. A 106 042601

    [50]

    Donelli B, Gherardini S, Marino R, Campaioli F, Buffoni L 2025 Phys. Rev. E 111 L062102

    [51]

    Dou F Q, Lu Y Q, Wang Y J, Sun J A 2022 Phys. Rev. B 105 115405

    [52]

    Erdman P A, Andolina G M, Giovannetti V, Noé F 2024 Phys. Rev. Lett. 133 243602

    [53]

    Lu W, Chen J, Kuang L M, Wang X 2021 Phys. Rev. A 104 043706

    [54]

    Yang H Y, Shi H L, Wan Q K, Zhang K, Wang X H, Yang W L 2024 Phys. Rev. A 109 012204

    [55]

    Arjmandi M B, Shokri A, Faizi E, Mohammadi H 2022 Phys. Rev. A 106 062609

    [56]

    Carrasco J, Maze J R, Hermann-Avigliano C, Barra F 2022 Phys. Rev. E 105 064119

    [57]

    Kamin F, Tabesh F, Salimi S, Santos A C 2020 Phys. Rev. E 102 052109

    [58]

    Shi H L, Ding S, Wan Q K, Wang X H, Yang W L 2022 Phys. Rev. Lett. 129 130602

    [59]

    Zhang D, Ma S, Yu Y, Jin G, Chen A 2025 Adv. Quantum Technol. e2500243

    [60]

    Mayo F, Roncaglia A J 2022 Phys. Rev. A 105 062203

    [61]

    Tirone S, Salvia R, Chessa S, Giovannetti V 2025 Phys. Rev. A 111 012204

    [62]

    Yu W L, Zhang Y, Li H, Wei G F, Han L P, Tian F, Zou J 2023 Chin. Phys. B 32 010302

    [63]

    Hovhannisyan K V, Perarnau-Llobet M, Huber M, Acín A 2013 Phys. Rev. Lett. 111 240401

    [64]

    Campaioli F, Pollock F A, Binder F C, Céleri L, Goold J, Vinjanampathy S, Modi K 2017 Phys. Rev. Lett. 118 150601

    [65]

    Wen J, Wen Z, Peng P, Li G Q 2025 Chin. Phys. B 34 100302

    [66]

    Barra F 2019 Phys. Rev. Lett. 122 210601

    [67]

    Hovhannisyan K V, Barra F, Imparato A 2020 Phys. Rev. Res. 2 033413

    [68]

    Chang W, Yang T R, Dong H, Fu L, Wang X, Zhang Y Y 2021 New J. Phys. 23 103026

    [69]

    Carrega M, Crescente A, Ferraro D, Sassetti M 2020 New J. Phys. 22 083085

    [70]

    Zhao F, Dou F Q, Zhao Q 2021 Phys. Rev. A 103 033715

    [71]

    Santos A C, C akmak B, Campbell S, Zinner N T 2019 Phys. Rev. E 100 032107

    [72]

    Ghosh S, Chanda T, Mal S, Sen(De) A 2021 Phys. Rev. A 104 032207

    [73]

    Tacchino F, Santos T F F, Gerace D, Campisi M, Santos M F 2020 Phys. Rev. E 102 062133

    [74]

    Gherardini S, Campaioli F, Caruso F, Binder F C 2020 Phys. Rev. Res. 2 013095

    [75]

    Liu J, Segal D, Hanna G 2019 J. Phys. Chem. C 123 18303

    [76]

    Tabesh F, Kamin F, Salimi S 2020 Phys. Rev. A 102 052223

    [77]

    Hu M L, Gao T, Fan H 2025 Phys. Rev. A 111 042216

    [78]

    Bai S Y, An J H 2020 Phys. Rev. A 102 060201

    [79]

    Liu J, Segal D 2021 arXiv: 2104.06522 [quant-ph]

    [80]

    Zhu G, Chen Y, Hasegawa Y, Xue P 2023 Phys. Rev. Lett. 131 240401

    [81]

    Yang X, Yang Y H, Liu X Z, Jiang J L, Zheng X Z, Fei S M, Luo M X 2024 Cell Rep. Phys. Sci. 5 102300

    [82]

    Liu Z D, Sun Y N, Liu B H, Li C F, Guo G C, Hamedani R S, Lyyra H, Piilo J 2020 Phys. Rev. A 102 062208

    [83]

    Huang X J, Wang K, Xiao L, Gao L, Lin H Q, Xue P 2023 Phys. Rev. A 107 L030201

    [84]

    Allahverdyan A E, Balian R, Nieuwenhuizen T M 2004 Eur. Phys. Lett. 67 565

    [85]

    Ali A, Al-Kuwari S, Hussain M, Byrnes T, Rahim M, Quach J Q, Ghominejad M, Haddadi S 2024 Phys. Rev. A 110 052404

    [86]

    Malavazi A H, Sagar R, Ahmadi B, Dieguez P R 2025 PRX Energy 4 023011

    [87]

    Mojaveri B, Jafarzadeh Bahrbeig R, Fasihi M 2024 Phys. Rev. A 109 042619

    [88]

    Yang X, Yang Y H, Alimuddin M, Salvia R, Fei S M, Zhao L M, Nimmrichter S, Luo M X 2023 Phys. Rev. Lett. 131 030402

    [89]

    Alimuddin M, Guha T, Parashar P 2020 Phys. Rev. E 102 022106

    [90]

    Kamin F, Salimi S, Santos A C 2021 Phys. Rev. E 104 034134

    [91]

    Sarkar A, Chaki P, Ghosh P, Sen U 2025 arXiv: 2505.16851 [quant-ph]

    [92]

    Mondal S, Saha D, Sen U 2025 arXiv: 2507.16610 [quant-ph]

    [93]

    Sun W, Jin Y, Lu G 2024 Phys. Rev. A 109 042422

    [94]

    Wang Y, Huang X, Zhang T 2025 Adv. Quantum Technol. 2400652

    [95]

    Bai G, Gong H, Li B 2024 Eur. Phys. J. Plus 139 1053

    [96]

    Wang Y K, Ge L Z, Zhang T, Fei S M, Gao Y, Wang Z X 2025 Quantum Inf. Process. 24 34

    [97]

    Wang H, Gong H, Li B 2025 Laser Phys. Lett. 22 065204

    [98]

    Wang L, Liu S Q, Wu F L, Fan H, Li N N, Liu S Y 2025 Phys. Rev. A 112 022206

    [99]

    Zhang T, Yang H, Fei S M 2024 Phys. Rev. A 109 042424

    [100]

    Wang Y, Liu H, Fei S M, Zhang T 2025 Adv. Quantum Technol. 2500095

    [101]

    Castellano R, Farina D, Giovannetti V, Acin A 2024 Phys. Rev. Lett. 133 150402

    [102]

    Di Bello G, Farina D, Jansen D, Perroni C, Cataudella V, De Filippis G 2024 Quantum Sci. Technol. 10 015049

    [103]

    Castellano R, Nery R, Simonov K, Farina D 2025 Phys. Rev. A 111 012212

    [104]

    Gyhm J Y, Safránek D, Rosa D 2022 Phys. Rev. Lett. 128 140501

    [105]

    Shi H L, Gan L, Zhang K, Wang X H, Yang W L 2025 arXiv: 2503.02667 [quant-ph]

    [106]

    Giovannetti V, Lloyd S, Maccone L 2003 Phys. Rev. A 67 052109

    [107]

    Deffner S, Lutz E 2013 J. Phys. A: Math. Theor. 46 335302

    [108]

    Campaioli F 2020 arXiv: 2004.08384 [quant-ph]

    [109]

    Zakavati S, Tabesh F T, Salimi S 2021 Phys. Rev. E 104 054117

    [110]

    Imai S, Gühne O, Nimmrichter S 2023 Phys. Rev. A 107 022215

    [111]

    Barra F 2022 Entropy 24 820

    [112]

    Xu H, Li J 2024 arXiv: 2411.04132 [quant-ph]

    [113]

    Seidov S, Mukhin S 2024 Phys. Rev. A 109 022210

    [114]

    Julià-Farré S, Salamon T, Riera A, Bera M N, Lewenstein M 2020 Phys. Rev. Res. 2 023113

    [115]

    Dou F Q, Zhou H, Sun J A 2022 Phys. Rev. A 106 032212

    [116]

    Zhang X, Blaauboer M 2023 Front. Phys. 10 1097564

    [117]

    Zhang W, Wang S, Wu C, Wang G 2023 Phys. Rev. E 107 054125

    [118]

    Canzio A, Cavina V, Polini M, Giovannetti V 2025 Phys. Rev. A 111 022222

    [119]

    Zhang D, Ma S, Yu Y, Jin G, Chen A 2025 Phys. Rev. A 112 022615

    [120]

    Bhattacharyya A, Dongre P, Sen U 2024 arXiv: 2410.00618 [quant-ph]

    [121]

    Zhang D, Ma S, Jiang Y, Yu Y, Jin G, Chen A 2024 Phys. Rev. A 110 032211

    [122]

    Hadipour M, Yousefi N N, Mortezapour A, Miavaghi A S, Haseli S 2025 Sci. Rep. 15 14578

    [123]

    Liu C G, Zhang J T, Ai Q 2025 Phys. Rev. A 112 043705

    [124]

    Li J, Wu N 2025 Phys. Rev. E 111 044118

    [125]

    Zahia A A 2025 Phys. Scr. 100 085403

    [126]

    Catalano A G, Giampaolo S M, Morsch O, Giovannetti V, Franchini F 2024 PRX Quantum 5 030319

    [127]

    Arjmandi M B, Mohammadi H, Saguia A, Sarandy M S, Santos A C 2023 Phys. Rev. E 108 064106

    [128]

    Zhang X L, Song X K, Wang D 2024 Adv. Quantum Technol. 7 2400114

    [129]

    Rahman S, Murugesh S 2024 Phys. Scr. 100 015106

    [130]

    Grazi R, Cavaliere F, Traverso Ziani N, Ferraro D 2025 Symmetry 17 220

    [131]

    Qi S f, Jing J 2025 Phys. Lett. A 530 130124

    [132]

    Saffman M, Walker T G, Mølmer K 2010 Rev. Mod. Phys. 82 2313

    [133]

    Yao Y, Shao X Q 2021 Phys. Rev. E 104 044116

    [134]

    Quach J Q, Munro W J 2020 Phys. Rev. Applied 14 024092

    [135]

    Sen K, Sen U 2021 Phys. Rev. A 104 L030402

    [136]

    Sun P Y, Zhou H, Dou F Q 2024 arXiv: 2412.01442 [quant-ph]

    [137]

    Zahia A A, Abd-Rabbou M, Megahed A M 2025 J. Phys. B: At. Mol. Opt. Phys. 58 065501

    [138]

    Gumberidze M, Kolár M, Filip R 2019 Sci. Rep. 9 19628

    [139]

    García-Pintos L P, Hamma A, Del Campo A 2020 Phys. Rev. Lett. 125 040601

    [140]

    C akmak B 2020 Phys. Rev. E 102 042111

    [141]

    Seah S, Perarnau-Llobet M, Haack G, Brunner N, Nimmrichter S 2021 Phys. Rev. Lett. 127 100601

    [142]

    Caravelli F, Yan B, García-Pintos L P, Hamma A 2021 Quantum 5 505

    [143]

    Kamin F H, Salimi S, Arjmandi M B 2024 Phys. Rev. A 109 022226

    [144]

    Liu S Q, Wang L, Fan H, Wu F L, Liu S Y 2024 Phys. Rev. A 109 042411

    [145]

    Chen Y, Tan J, Lu J, Hao X 2025 Commun. Theor. Phys. 77 065107

    [146]

    Xu K, Zhu H J, Zhang G F, Liu W M 2021 Phys. Rev. E 104 064143

    [147]

    Xu K, Li H G, Li Z G, Zhu H J, Zhang G F, Liu W M 2022 Phys. Rev. A 106 012425

    [148]

    Liu S Q, Wang L, Fan H, Wu F L, Liu S Y 2025 Adv. Quantum Technol. e00504

    [149]

    Santos A C, Saguia A, Sarandy M S 2020 Phys. Rev. E 101 062114

    [150]

    Yao Y, Shao X Q 2022 Phys. Rev. E 106 014138

    [151]

    Centrone F, Mancino L, Paternostro M 2023 Phys. Rev. A 108 052213

    [152]

    Ukhtary M S, Rangkuti C N 2025 Appl. Phys. Lett. 126 034002

    [153]

    Khodadad Z, Mahdian M, Hanna G 2024 J. Chem. Phys. 160 234114

    [154]

    Morrone D, Rossi M A, Smirne A, Genoni M G 2023 Quantum Sci. Technol. 8 035007

    [155]

    Breuer H P, Laine E M, Piilo J 2009 Phys. Rev. Lett. 103 210401

    [156]

    Fanchini F F, Karpat G, C akmak B, Castelano L, Aguilar G, Farías O J, Walborn S, Ribeiro P S, De Oliveira M 2014 Phys. Rev. Lett. 112 210402

    [157]

    Chru´sciński D, Maniscalco S 2014 Phys. Rev. Lett. 112 120404

    [158]

    Luo S, Fu S, Song H 2012 Phys. Rev. A 86 044101

    [159]

    Kamin F, Tabesh F, Salimi S, Kheirandish F, Santos A C 2020 New J. Phys. 22 083007

    [160]

    Li J, Shen H, Yi X 2022 Opt. Lett. 47 5614

    [161]

    Song M L, Li L J, Song X K, Ye L, Wang D 2022 Phys. Rev. E 106 054107

    [162]

    Hadipour M, Haseli S, Dolatkhah H, Rashidi M 2023 Sci. Rep. 13 10672

    [163]

    Tiwari D, Banerjee S 2023 Front. Quantum Sci. Technol. 2 1207552

    [164]

    Mojaveri B, Jafarzadeh B R, Fasihi M A, Babanzadeh S 2023 Sci. Rep. 13 19827

    [165]

    Xu K, Li H G, Zhu H J, Liu W M 2024 Phys. Rev. E 109 054132

    [166]

    Hadipour M, Haseli S, Wang D, Haddadi S 2024 Adv. Quantum Technol. 7 2400115

    [167]

    Mojaveri B, Jafarzadeh B R, Fasihi M A 2024 Phys. Rev. E 110 064107

    [168]

    Luo J T, Li L, Wei H, Jing T, He Z 2024 Laser Phys. Lett. 22 015209

    [169]

    Hao X, Chen Y, Ren T X, Tan J, Wu Y Z 2025 Quantum Inf. Process. 24 235

    [170]

    Bhanja G, Tiwari D, Banerjee S 2024 Phys. Rev. A 109 012224

    [171]

    Cavaliere F, Gemme G, Benenti G, Ferraro D, Sassetti M 2025 Commun. Phys. 8 76

    [172]

    Zhao S C, Zhao Z R, Zhuang N Y 2025 Phys. Rev. E 112 024129

    [173]

    Zhao S C, Luo L, Zhuang N Y 2025 arXiv: 2508.02772 [quant-ph]

    [174]

    Basu R, Chakraborty A, Badhani H, Alimuddin M, Bhattacharya S 2025 Phys. Rev. A 111 032416

    [175]

    Tiwari D, Bose B, Banerjee S 2025 J. Chem. Phys. 162 114104

    [176]

    De Pasquale A, Yuasa K, Giovannetti V 2017 Phys. Rev. A 96 012316

    [177]

    Gherardini S, Smirne A, Müller M M, Caruso F 2019 Proceedings 12 11

    [178]

    Smerzi A 2012 Phys. Rev. Lett. 109 150410

    [179]

    Suri N, Binder F C, Muralidharan B, Vinjanampathy S 2018 Eur. Phys. J. Spec. Top. 227 203

    [180]

    Müller M M, Gherardini S, Smerzi A, Caruso F 2016 Phys. Rev. A 94 042322

    [181]

    Schäfer F, Herrera I, Cherukattil S, Lovecchio C, Cataliotti F S, Caruso F, Smerzi A 2014 Nat. Commun. 5 3194

    [182]

    Mitchison M T, Goold J, Prior J 2021 Quantum 5 500

    [183]

    Hotta M, Ikeda K 2025 Quantum Inf. Process. 24 186

    [184]

    Santos A C 2021 Phys. Rev. E 103 042118

    [185]

    Song W L, Liu H B, Zhou B, Yang W L, An J H 2024 Phys. Rev. Lett. 132 090401

    [186]

    Bruzewicz C D, Chiaverini J, McConnell R, Sage J M 2019 Appl. Phys. Rev. 6 021314

    [187]

    Maillette de Buy Wenniger I, Thomas S E, Maffei M, Wein S C, Pont M, Belabas N, Prasad S, Harouri A, Lemaıtre A, Sagnes I, Somaschi N, Auff`eves A, Senellart P 2023 Phys. Rev. Lett. 131 260401

    [188]

    Adams C S, Pritchard J D, Shaffer J P 2019 J. Phys. B 53 012002

  • [1] 贺志, 罗嘉涛, 韦和. 基于连续空结果测量方案的相位估计精度保护. 物理学报, doi: 10.7498/aps.75.20251341
    [2] 孔俊然, 毛铓, 刘焕, 王晨. 非平衡各向异性Dicke模型中的量子热能输运. 物理学报, doi: 10.7498/aps.74.20251007
    [3] 王光杰, 宋学科, 叶柳, 王栋. 三味中微子振荡的量子资源特性研究. 物理学报, doi: 10.7498/aps.74.20250029
    [4] 赖红, 任黎, 黄钟锐, 万林春. 基于多尺度纠缠重整化假设的量子网络通信资源优化方案. 物理学报, doi: 10.7498/aps.73.20241382
    [5] 王东升. 通用量子计算模型: 一个资源理论的视角. 物理学报, doi: 10.7498/aps.73.20240893
    [6] 朱佳莉, 曹原, 张春辉, 王琴. 实用化量子密钥分发光网络中的资源优化配置. 物理学报, doi: 10.7498/aps.72.20221661
    [7] 全海涛, 董辉, 孙昌璞. 介观统计热力学理论与实验. 物理学报, doi: 10.7498/aps.72.20231608
    [8] 黄彬源, 贺志, 陈雨. 基于依赖强度Dicke模型的量子电池充电性能. 物理学报, doi: 10.7498/aps.72.20230578
    [9] 陈子杰, 潘啸轩, 华子越, 王韦婷, 马雨玮, 李明, 邹旭波, 孙麓岩, 邹长铃. 基于超导量子系统的量子纠错研究进展. 物理学报, doi: 10.7498/aps.71.20221824
    [10] 裴思辉, 宋子旋, 林星, 方伟. 开放式法布里-珀罗光学微腔中光与单量子系统的相互作用. 物理学报, doi: 10.7498/aps.71.20211970
    [11] 陈以鹏, 刘靖阳, 朱佳莉, 方伟, 王琴. 机器学习在量子通信资源优化配置中的应用. 物理学报, doi: 10.7498/aps.71.20220871
    [12] 蓝康, 杜倩, 康丽莎, 姜露静, 林振宇, 张延惠. 基于量子点接触的开放双量子点系统电子转移特性. 物理学报, doi: 10.7498/aps.69.20191718
    [13] 沈珏, 刘成周, 朱宁宁, 童一诺, 严晨成, 薛珂磊. 非对易施瓦西黑洞的热力学及其量子修正. 物理学报, doi: 10.7498/aps.68.20191054
    [14] 游波, 岑理相. 非马尔科夫耗散系统长时演化下的极限环振荡现象. 物理学报, doi: 10.7498/aps.64.210302
    [15] 杨宇光, 温巧燕, 朱甫臣. 单个N维量子系统的量子秘密共享. 物理学报, doi: 10.7498/aps.55.3255
    [16] 王钢柱, 王纪龙. 缓变动态Kerr-Newman黑洞的量子热力学性质. 物理学报, doi: 10.7498/aps.53.1669
    [17] 高 涛, 王红艳, 易有根, 谭明亮, 朱正和, 孙 颖, 汪小琳, 傅依备. PuO分子X5Σ-态的势能函数及热力学函数的量子力学计算. 物理学报, doi: 10.7498/aps.48.2222
    [18] 熊元生, 易林, 姚凯伦. 量子Sherrington-Kirkpatrick自旋玻璃模型的热力学性质——各向异性和磁场影响. 物理学报, doi: 10.7498/aps.43.2052
    [19] 李吉士, 张思远, 章思俊. 电声子系统磁电现象的量子理论. 物理学报, doi: 10.7498/aps.21.1638
    [20] 张宗燧. 量子系统的Ergodlc定理. 物理学报, doi: 10.7498/aps.14.400
计量
  • 文章访问数:  140
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-12-12

/

返回文章
返回