搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

释放疏水表面气泡:低强度超声场中双气泡平移模式研究

马佳昱 李秀如 吴玉婷 武耀蓉 王成会 沈壮志 郭建中 林书玉

引用本文:
Citation:

释放疏水表面气泡:低强度超声场中双气泡平移模式研究

马佳昱, 李秀如, 吴玉婷, 武耀蓉, 王成会, 沈壮志, 郭建中, 林书玉

Detachment of Bubbles from Hydrophobic Surfaces: A Study on Dual-Bubble Translational Modes in Low-Intensity Ultrasound Fields

Ma Jia-Yu, Li Xiu-Ru, Wu Yu-Ting, Wu Yao-Rong, Wang Cheng-Hui, Shen Zhuang-Zhi, Guo Jian-Zhong, Lin Shu-Yu
Article Text (iFLYTEK Translation)
PDF
导出引用
在线预览
  • 微气泡在超声场中的相互作用是声流控与空化应用的核心问题. 本研究提出一种利用低强度超声,以疏水表面作为稳定气泡源,释放表面微气泡的实验方法,游离出的气泡向声压波腹聚集. 通过高速摄像技术,系统观测并分析了气泡聚集区域内耦合双气泡的相向平移行为,识别出了四种具有显著特征的平移模式. 研究表明,由于平移模式与气泡径向振荡的强耦合效应:模式Ⅰ和Ⅲ表现为气泡速度弹跳与径向收缩驱动的加速碰撞,模式Ⅱ和Ⅳ为气泡速度弹跳与径向膨胀诱导的减速碰撞. 双气泡平移碰撞数据统计分析表明,随着功率增加,气泡径向振荡幅度增大,速度弹跳次数减少,平移碰撞进程显著加快,且在较高功率下模式Ⅲ和Ⅳ有向模式Ⅰ和Ⅱ退化的趋势. 双气泡模型的理论预测与实验得到的速度弹跳趋势一致,揭示了双气泡径向振荡对其平移碰撞行为的调控机制. 双气泡初始半径比、初始间距以及碰撞雷诺数是调控平移模式的关键参数,而取向角的影响并不显著. 低强度超声场中双气泡的平移运动规律,为多气泡系统动力学建模提供了关键实验依据,对声流控及超声空化的应用优化具有重要指导意义.
    The dynamic interaction of microbubbles in an ultrasonic field is a core scientific issue for precise manipulation in acoustofluidics and the efficient application of ultrasonic cavitation. Existing microbubble generation technologies (e.g., ultrasonic cavitation and laser-induced nucleation) generally suffer from limitations such as non-uniform bubble sizes, random spatial distribution, and the difficulty of balancing high-precision control with high-throughput repeatability. Furthermore, multi-bubble dynamics theory currently lacks systematic experimental support under multi-parameter coupling (e.g., initial radius, spacing, and orientation angle). In this study, we propose an experimental method using low-intensity ultrasound with a hydrophobic surface as a stable bubble source to release surface microbubbles, which subsequently migrate towards the acoustic pressure antinode. Using high-speed imaging technology, we systematically observed and analyzed the mutual translational behavior of coupled twin bubbles within the aggregation region, identifying four translational modes with distinct characteristics. The results indicate that the bubble aggregation region is precisely located at the acoustic pressure antinode, and the bubble area fraction within this region increases significantly with increasing dimensionless power. The four identified translational modes, which are strongly coupled with radial oscillation, consist of a "velocity bouncing-collision" process. Modes I and III manifest as accelerated collisions driven by velocity bouncing and radial contraction, while Modes II and IV manifest as decelerated collisions induced by velocity bouncing and radial expansion. Statistical analysis of the twin-bubble translational collision data demonstrates that as power increases, the amplitude of radial oscillation increases, the number of velocity bounces decreases, and the translational collision process accelerates significantly. Moreover, at higher power levels, Modes III and IV tend to degenerate towards Modes I and II. The initial radius ratio, initial spacing, and collision Reynolds number are key parameters regulating the translational modes. Modes I and II dominate when the initial radius ratio deviates from 1 and the initial spacing exceeds 350 μm, whereas Modes III and IV are more likely to occur when the initial radius ratio approaches 1 and the initial spacing is less than 200 μm. The orientation angle has no significant effect on the modes. The predictions of the twin-bubble theoretical model show good agreement with the experimental data, validating the precise regulation mechanism of radial oscillation on bubble translational behavior. These insights into the translational motion laws of twin bubbles in low-intensity ultrasonic fields provide a crucial experimental basis for the dynamic modeling of multi-bubble systems and hold significant implications for the optimal design of acoustofluidic devices, targeted microbubble delivery, and the optimization of ultrasonic cavitation applications.
  • [1]

    Neppiras E A 1980 Phys. Rep. 61 159

    [2]

    Chahine G L, Kapahi A, Choi J K, Hsiao C T 2016 Ultrason. Sonochem. 29 528

    [3]

    Bjerknes V F K 1906 Fields of Force (New York: Columbia University Press) pp29–55

    [4]

    Zilonova, Ekaterina and Solovchuk, Maxim and Sheu, T. W. H. 2019 Phys. Rev. E 99 023109

    [5]

    Ma Y, Zhang G Q, Ma T 2022 Ultrason. Sonochem. 84 105953

    [6]

    Liu J X, Wang X P, Liang J F, Qiao Y P 2024 Ultrason. Sonochem. 102 106756

    [7]

    Liu L, Zhang P, Yan W J, Wu Y M, Jin G F, Song H B, An F P, Wu Y Q, Li X, Luo P, Huang Q 2025 Ultrason. Sonochem. 122 107605

    [8]

    Sun R X, Xu W C, Xiong L M, Jiang N, Xia J Y, Zhu Y Z, Wang C, Liu Q Y, Ma Y H, Luo H B 2023 Ultrason. Sonochem. 98 106517

    [9]

    Liu Y, Zhou Y, Zhang W, Chen S, Liang S 2024 J. Biomed. Eng. 41 919

    [10]

    Shi Z, Zhang Z Y, Justus Schnermann, Stephan C. F. Neuhauss, Nitesh Nama, Raphael Wittkowski, Daniel Ahmed 2025 Nature 646 1096-1104

    [11]

    Crum, Lawrence A 1975 J. Acoust. Soc. Am. 57 1363-1370

    [12]

    Doinikov, Alexander A 2001 Phys. Rev. E 64 026301

    [13]

    Liang J F, Wu X Y, Qiao Y P 2021 Ultrason. Sonochem. 80 105837

    [14]

    Wang X J, Ning Z, Lv M, Wu P F, Sun C H, Liu Y C 2023 Ultrason. Sonochem. 92 106271

    [15]

    Lanoy, Maxime and Derec, Caroline and Tourin, Arnaud and Leroy, Valentin 2015 Appl. Phys. Lett 107 214101

    [16]

    Doinikov, Alexander A. and Micol, Thomas and Mauger, Cyril and Blanc-Benon, Philippe and Inserra, Claude 2023 Micromachines 14 1615

    [17]

    Regnault, Gabriel and Doinikov, Alexander A. and Laloy-Borgna, Gabrielle and Mauger, Cyril and Blanc-Benon, Philippe and Catheline, Stefan and Inserra, Claude 2024 Phys. Fluids 36 047134

    [18]

    Huang X, Liu P B, Niu G Y, Hu H B 2025 Ultrason. Sonochem. 112 107188

    [19]

    Chew, Lup Wai and Klaseboer, Evert and Ohl, Siew-Wan and Khoo, Boo Cheong 2011 Phys. Rev. E 84 066307

    [20]

    Regnault, Gabriel and Mauger, Cyril and Blanc-Benon, Philippe and Inserra, Claude 2020 Phys. Rev. E 102 031101

    [21]

    Lei, Z K, Wu, Y R, He J Y, and Liu R, Wang C H, Chen S, Hu J, Mo R Y, Guo J Z and Lin S Y 2025 Phys. Fluids 37 087168

    [22]

    Belova, Valentina and Gorin, Dmitry A. and Shchukin, Dmitry G. and Mohwald, Helmuth 2011 ACS Appl. Mater. Interfaces 3 417-425

    [23]

    Bilotto, Pierluigi and Miano, Daniela and Celebi, Alper Tunga and Valtiner, Markus 2024 Langmuir 40 27127-27136

    [24]

    Tan, Beng Hau and An, Hongjie and Ohl, Claus-Dieter 2018 Phys. Rev. Lett. 120 164502

    [25]

    Lohse, Detlef and Zhang, Xuehua 2015 Rev. Mod. Phys. 87 981--1035

    [26]

    Hu J, Zhou Y, Ye B, Li J and Zhang X 2025 J. Phys. Chem. B 129 10584-10594

    [27]

    Wei L, Liu S, Dong F 2024 J. Hydrodyn. 36 1104-1117

    [28]

    Wang W B and Zhao Y F and Wang F and Daniels, Matthew W. and Chang C Z and Zang J D and Xiao D and Wu W D 2021 Nano Letters 21 1108-1114

    [29]

    Minnaert M 1933 Philos. Mag. 16 235

    [30]

    Zhang X M, Li F, Wang C H, Guo J Z, Mo R Y, Hu J, Chen S, He J X, Liu H H 2022 Ultrason. Sonochem. 84 105957

    [31]

    Jiao J J, He Y, Sandra E. Kentish, Muthupandian Ashokkumar, Richard Manasseh, Judy Lee 2015 Ultrasonics 58 35-42

    [32]

    Wang H C, Jiao J J, Pan X C, Qi Y J, Shan F, Fang Z, Wang C T, He Y 2024 Ultrason. Sonochem. 111 107075

    [33]

    Keller J B, Miksis M 1980 J. Acoust. Soc. Am. 68 628

    [34]

    Zenit, Roberto and Magnaudet, Jacques 2008 Phys. Fluids 20 061702

    [35]

    S. Alirahimi, H. Mohammadi Alashti and A. Jafari 2025 Sci. Rep 15 28274

    [36]

    Jamali, Bentolhoda and Behnia, Sohrab and Fathizadeh, Samira 2025 J. Acoust. Soc. Am. 157 3133-3147

  • [1] 张照威, 王燕云, 樊海明, 经光银. 表面纳米气泡的稳定性机制. 物理学报, doi: 10.7498/aps.74.20250521
    [2] 李秀如, 刘雅璐, 马佳昱, 吴玉婷, 王成会, 莫润阳. 刚性毛细管内微气泡弹跳行为. 物理学报, doi: 10.7498/aps.74.20250968
    [3] 王丽娜, 陈力, 盛敏佳, 王雷磊, 崔海航, 郑旭, 黄明华. 体相微马达双气泡聚并驱动的界面演化机制. 物理学报, doi: 10.7498/aps.72.20230608
    [4] 乌日乐格, 那仁满都拉. 具有传质传热及扩散效应的双气泡的相互作用. 物理学报, doi: 10.7498/aps.72.20230863
    [5] 许龙, 汪尧. 双泡耦合声空化动力学过程模拟. 物理学报, doi: 10.7498/aps.72.20221571
    [6] 王凯宇, 庞祥龙, 李晓光. 超疏水表面液滴的振动特性及其与液滴体积的关系. 物理学报, doi: 10.7498/aps.70.20201771
    [7] 叶欣, 单彦广. 疏水表面振动液滴模态演化与流场结构的数值模拟. 物理学报, doi: 10.7498/aps.70.20210161
    [8] 吴学由, 梁金福. 超声场中单气泡的平移和非球形振动. 物理学报, doi: 10.7498/aps.70.20210513
    [9] 李想, 陈勇, 封皓, 綦磊. 声波激励下管路轴向分布双气泡动力学特性分析. 物理学报, doi: 10.7498/aps.69.20200546
    [10] 许少锋, 楼应侯, 吴尧锋, 王向垟, 何平. 微通道疏水表面滑移的耗散粒子动力学研究. 物理学报, doi: 10.7498/aps.68.20182002
    [11] 莫润阳, 王成会, 胡静, 陈时. 双气泡振子系统的非线性声响应特性分析. 物理学报, doi: 10.7498/aps.68.20190408
    [12] 郭策, 祝锡晶, 王建青, 叶林征. 超声场下刚性界面附近溃灭空化气泡的速度分析. 物理学报, doi: 10.7498/aps.65.044304
    [13] 张娅, 潘光, 黄桥高. 疏水表面减阻的格子Boltzmann方法数值模拟. 物理学报, doi: 10.7498/aps.64.184702
    [14] 黄桥高, 潘光, 宋保维. 疏水表面滑移流动及减阻特性的格子Boltzmann方法模拟. 物理学报, doi: 10.7498/aps.63.054701
    [15] 李帅, 张阿漫. 上浮气泡在壁面处的弹跳特性研究. 物理学报, doi: 10.7498/aps.63.054705
    [16] 霍新贺, 王立锋, 陶烨晟, 李英骏. 非理想流体中Rayleigh-Taylor和Richtmyer-Meshkov不稳定性气泡速度研究. 物理学报, doi: 10.7498/aps.62.144705
    [17] 王勇, 林书玉, 莫润阳, 张小丽. 含气泡液体中气泡振动的研究. 物理学报, doi: 10.7498/aps.62.134304
    [18] 宋保维, 郭云鹤, 罗荘竹, 徐向辉, 王鹰. 疏水表面减阻环带实验研究. 物理学报, doi: 10.7498/aps.62.154701
    [19] 陶烨晟, 王立锋, 叶文华, 张广财, 张建成, 李英骏. 任意Atwood数Rayleigh-Taylor和 Richtmyer-Meshkov 不稳定性气泡速度研究. 物理学报, doi: 10.7498/aps.61.075207
    [20] 梁玉, 郭立新. 气泡/泡沫覆盖粗糙海面电磁散射的修正双尺度法研究. 物理学报, doi: 10.7498/aps.58.6158
计量
  • 文章访问数:  24
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-12-18

/

返回文章
返回