搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水溶液中结合水的定义与量化

王强 曹则贤

引用本文:
Citation:

水溶液中结合水的定义与量化

王强, 曹则贤

Definition and quantification of hydration water in aqueous solutions

Wang Qiang, Cao Ze-Xian
PDF
导出引用
  • 水溶液中溶质的结合水具有不同于远离溶质的自由水的结构和性质.结合水的存在对水和溶质结构和动力学性质均具有显著甚至决定性的影响.然而,对结合水动力学和热力学性质的定量理解在诸多方面一直存在争议甚至严重分歧,其中重点包括如何定义和量化结合水,如何表征结合水和自由水的动力学差别,结合水如何参与生物大分子各种生物功能过程,以及溶质或界面影响结合水结构与性质的途径等.给出结合水定义的物理学依据和量化方法,是深入理解上述问题的第一步.本文简述了各种不同谱学方法定义结合水的基本原理及量化的困难,强调具有不同时间和空间响应尺度的测试方法所得结合水数不必完全可比.此外,系列水溶液物性随浓度升高会明显改变其浓度依赖关系,相应拐点浓度常被用于量化稀溶液中的溶质结合水数.我们近期研究的水溶液玻璃化转变温度-浓度关系,为结合水的定义、量化和水溶液的三区划分提供了物理依据,同时揭示了上述利用性质-浓度关系拐点浓度量化结合水方法的不足.
    Water molecules in the very proximity to the solute differ a lot from those in the far and the bulk water in both structure and property, they are usually referred to as hydration water or bound water. There is no doubt about the effect of hydration water on the property and structure of solute in solution, in particular when biological macromolecules are of concern. However, by far, there are even significant controversies over the understanding of hydration water, including the accurate definition and quantification of hydration water, the quantitative evaluation of the difference in the properties between the hydration water and free water, and how the hydration water is involved in the various biological processes, etc. For resolving the aforementioned issues, it would be of essential importance to formulate a quantification scheme for the hydration water on a sound footing. In the present article, the principles of various spectrometric techniques for determining hydration water are briefly examined, and the main deficiency in quantification of hydration water for the individual techniques is analyzed. Those techniques based on the inflection point of the concentration dependence of some physical properties of the solution are also scrutinized. Finally, we present in detail a quantification scheme for hydration water based on the concentration dependence of glass transition temperature, which leads to quite a universal categorization of an aqueous solution into three distinct zones. Also the crystallization dynamics thus revealed might be helpful for understanding the water-involved processes in other circumstances.
    [1]

    Bellissent-Funel M C, Hassanali A, Havenith M, Henchman R, Pohl P, Sterpone F, van der Spoel D, Xu Y, Garcia A E 2016 Chem. Rev. 116 7673

    [2]

    Chaplin M 2006 Nat. Rev. Mol. Cell. Biol. 7 861

    [3]

    McIntyre G I 2006 Med. Hypotheses 66 518

    [4]

    Abramczyk H, Brozek-Pluska B, Krzesniak M, Kopec M, Morawiec-Sztandera A 2014 Spectrochim. Acta A 129 609

    [5]

    Rupley J A, Careri G 1991 Adv. Protein Chem. 41 37

    [6]

    Zhang Y J, Cremer P S 2006 Curr. Opin. Chem. Biol. 10 658

    [7]

    Zou Q, Bennion B J, Daggett V, Murphy K P 2002 J. Am. Chem. Soc. 124 1192

    [8]

    Smolin N, Voloshin V P, Anikeenko A V, Geiger A, Winter R, Medvedev N N 2017 Phys. Chem. Chem. Phys. 19 6345

    [9]

    Marx D, Tuckerman M E, Hutter J, Parrinello M 1999 Nature 397 601

    [10]

    Headrick J M, Diken E G, Walters R S, Hammer N I, Christie R A, Cui J, Myshakin E M, Duncan M A, Johnson M A, Jordan K D 2005 Science 308 1765

    [11]

    Day T J F, Schmitt U W, Voth G A 2000 J. Am. Chem. Soc. 122 12027

    [12]

    Edward J T 1970 J. Chem. Educ. 47 261

    [13]

    Macchioni A, Ciancaleoni G, Zuccaccia C, Zuccaccia D 2008 Chem. Soc. Rev. 37 479

    [14]

    Blandamer M J, Engberts J B F N, Gleeson P T, Reis J C R 2005 Chem. Soc. Rev. 34 440

    [15]

    Zavitsas A A 2001 J. Phys. Chem. B 105 7805

    [16]

    Zavitsas A A 2010 Chem.-Eur. J. 16 5942

    [17]

    Laage D, Elsaesser T, Hynes J T 2017 Chem. Rev. 117 10694

    [18]

    Otting G, Liepinsh E, Wuthrich K 1991 Science 254 974

    [19]

    Shalit A, Ahmed S, Savolainen J, Hamm P 2017 Nat. Chem. 9 273

    [20]

    Omta A W, Kropman M F, Woutersen S, Bakker H J 2003 Science 301 347

    [21]

    Nibali V C, Havenith M 2014 J. Am. Chem. Soc. 136 12800

    [22]

    Bakker H J 2008 Chem. Rev. 108 1456

    [23]

    Frauenfelder H, Fenimore P W, McMahon B H 2002 Biophys. Chem. 98 35

    [24]

    King J T, Kubarych K J 2012 J. Am. Chem. Soc. 134 18705

    [25]

    Wood K, Plazanet M, Gabel F, Kessler B, Oesterhel D, Tobias D J, Zaccai G, Weik M 2007 Proc. Natl. Acad. Sci. USA 104 18049

    [26]

    Chen S H, Liu L, Fratini E, Baglioni P, Faraone A, Mamontov E 2006 Proc. Natl. Acad. Sci. USA 103 9012

    [27]

    Jansson H, Bergman R, Swenson J 2010 Phys. Rev. Lett. 104 017802

    [28]

    Ji M B, Odelius M, Gaffney K J 2010 Science 328 1003

    [29]

    Russo J, Romano F, Tanaka H 2014 Nat. Mater. 13 733

    [30]

    Vekilov P G 2010 Nanoscale 2 2346

    [31]

    Gebauer D, Colfen H 2011 Nano. Today 6 564

    [32]

    Dey A, Bomans P H H, Muller F A, Will J, Frederik P M, de With G, Sommerdijk N A J M 2010 Nat. Mater. 9 1010

    [33]

    Svergun D I, Richard S, Koch M H J, Sayers Z, Kuprin S, Zaccai G 1998 Proc. Natl. Acad. Sci. USA 95 2267

    [34]

    Merzel F, Smith J C 2002 Proc. Natl. Acad. Sci. USA 99 5378

    [35]

    Jenkins H D B, Marcus Y 1995 Chem. Rev. 95 2695

    [36]

    Marcus Y 2009 Chem. Rev. 109 1346

    [37]

    Fayer M D 2012 Accounts Chem. Res. 45 3

    [38]

    Mathurdevre R 1981 Period. Biol. 83 51

    [39]

    Angell C A, Sare E I 1970 J. Chem. Phys. 52 1058

    [40]

    Angell C A 2002 Chem. Rev. 102 2627

    [41]

    Angell C A, Tucker J C 1980 J. Phys. Chem.-Us 84 268

    [42]

    Lusse S, Arnold K 1996 Macromolecules 29 4251

    [43]

    Pochylski M, Aliotta F, Blaszczak Z, Gapinski J 2006 J. Phys. Chem. B 110 20533

    [44]

    Maxfield J, Shepherd I W 1975 Polymer 16 505

    [45]

    Jora M Z, Cardoso M V C, Sabadini E 2016 J. Mol. Liq. 222 94

    [46]

    Okouchi S, Ashida T, Sakaguchi S, Tsuchida K, Ishihara Y, Uedaira H 2002 Bull. Chem. Soc. Jpn. 75 59

    [47]

    Ogiwara Y, Kubota H, Hayashi S, Mitomo N 1969 J. Appl. Polym. Sci. 13 1689

    [48]

    Shikata T, Takahashi R, Sakamoto A 2006 J. Phys. Chem. B 110 8941

    [49]

    Maconnachie A, Vasudevan P, Allen G 1978 Polymer 19 33

    [50]

    Ping Z H, Nguyen Q T, Chen S M, Zhou J Q, Ding Y D 2001 Polymer 42 8461

    [51]

    Tirosh O, Barenholz Y, Katzhendler J, Priev A 1998 Biophys. J. 74 1371

    [52]

    Nakamura K, Hatakeyama T, Hatakeyama H 1981 Text Res. J. 51 607

    [53]

    Hatakeyama T, Nakamura K, Hatakeyama H 1988 Thermochim. Acta 123 153

    [54]

    Devringer T, Joosten J G H, Junginger H E 1986 Colloid. Polym. Sci. 264 623

    [55]

    Tahmasebi A, Yu J L, Su H X, Han Y N, Lucas J, Zheng H L, Wall T 2014 Fuel 135 243

    [56]

    Hager S L, Macrury T B 1980 J. Appl. Polym. Sci. 25 1559

    [57]

    Hey M J, Ilett S M 1991 J. Chem. Soc. Faraday T. 87 3671

    [58]

    Angell C A, Oguni M, Sichina W J 1982 J. Phys. Chem.-Us 86 998

    [59]

    Tombari E, Ferrari C, Salvetti G 1999 Chem. Phys. Lett. 300 749

    [60]

    Koop T, Luo B P, Tsias A, Peter T 2000 Nature 406 611

    [61]

    Holz M 1986 Prog. Nucl. Mag. Res. Sp. 18 327

    [62]

    Raviv U, Klein J 2002 Science 297 1540

    [63]

    Raschke T M 2006 Curr. Opin. Struc. Biol. 16 152

    [64]

    Ohtaki H, Radnai T 1993 Chem. Rev. 93 1157

    [65]

    Malinowski E R, Knapp P S, Feuer B 1966 J. Chem. Phys. 45 4274

    [66]

    Chizhik V I 1997 Mol. Phys. 90 653

    [67]

    Wu J, Lin W F, Wang Z, Chen S F, Chang Y 2012 Langmuir 28 7436

    [68]

    Wu J, Chen S F 2012 Langmuir 28 2137

    [69]

    Stokes R H, Robinson R A 1948 J. Am. Chem. Soc. 70 1870

    [70]

    He Z Y, Xie W J, Liu Z Q, Liu G M, Wang Z W, Gao Y Q, Wang J J 2016 Sci. Adv. 2 e1600345

    [71]

    Ebbinghaus S, Kim S J, Heyden M, Yu X, Heugen U, Gruebele M, Leitner D M, Havenith M 2007 Proc. Natl. Acad. Sci. USA 104 20749

    [72]

    Funkner S, Niehues G, Schmidt D A, Heyden M, Schwaab G, Callahan K M, Tobias D J, Havenith M 2012 J. Am. Chem. Soc. 134 1030

    [73]

    Sharma V, Bohm F, Schwaab G, Havenith M 2014 Phys. Chem. Chem. Phys. 16 25101

    [74]

    Heisler I A, Meech S R 2010 Science 327 857

    [75]

    Kanno H, Yamaguchi T, Ohtaki H 1989 J. Phys. Chem.-Us 93 1695

    [76]

    Baul U, Vemparala S 2015 Phys. Rev. E 91 012114

    [77]

    Falk M, Ford T A 1966 Can. J. Chem. 44 1699

    [78]

    Choe C, Lademann J, Darvin M E 2016 Analyst 141 6329

    [79]

    Uchida T, Hirano T, Ebinuma T, Narita H, Gohara K, Mae S, Matsumoto R 1999 Aiche. J. 45 2641

    [80]

    Kitano H, Sudo K, Ichikawa K, Ide M, Ishihara K 2000 J. Phys. Chem. B 104 11425

    [81]

    Perakis F, de Marco L, Shalit A, Tang F J, Kann Z R, Kuhne T D, Torre R, Bonn M, Nagata Y 2016 Chem. Rev. 116 7590

    [82]

    Mallamace F, Branca C, Broccio M, Corsaro C, Mou C Y, Chen S H 2007 Proc. Natl. Acad. Sci. USA 104 18387

    [83]

    Max J J, Larouche P, Chapados C 2017 J. Mol. Struct. 1149 457

    [84]

    Tao N J, Lindsay S M 1989 Biopolymers 28 1019

    [85]

    Tielrooij K J, Garcia-Araez N, Bonn M, Bakker H J 2010 Science 328 1006

    [86]

    Rezus Y L A, Bakker H J 2007 Phys. Rev. Lett. 99 148301

    [87]

    Moilanen D E, Levinger N E, Spry D B, Fayer M D 2007 J. Am. Chem. Soc. 129 14311

    [88]

    Tielrooij K J, Timmer R L, Bakker H J, Bonn M 2009 Phys. Rev. Lett. 102 198303

    [89]

    Ronne C, Astrand P O, Keiding S R 1999 Phys. Rev. Lett. 82 2888

    [90]

    Tielrooij K J, Paparo D, Piatkowski L, Bakker H J, Bonn M 2009 Biophys. J. 97 2484

    [91]

    Shiraga K, Ogawa Y, Kondo N, Irisawa A, Imamura M 2013 Food Chem. 140 315

    [92]

    Heugen U, Schwaab G, Brundermann E, Heyden M, Yu X, Leitner D M, Havenith, M 2006 Proc. Natl. Acad. Sci. USA 103 12301

    [93]

    Heyden M, Brundermann E, Heugen U, Niehues G, Leitner D M, Havenith M 2008 J. Am. Chem. Soc. 130 5773

    [94]

    Xu Y, Havenith M 2015 J. Chem. Phys. 143 170901

    [95]

    Agieienko V, Buchner R 2016 Phys. Chem. Chem. Phys. 18 2597

    [96]

    Shinyashiki N, Miyara M, Nakano S, Yamamoto W, Ueshima M, Imoto D, Sasaki K, Kita R, Yagihara S 2013 J. Mol. Liq. 181 110

    [97]

    Mashimo S, Kuwabara S, Yagihara S, Higasi K 1987 J. Phys. Chem.-Us 91 6337

    [98]

    Kaatze U 1997 J. Solution Chem. 26 1049

    [99]

    Magallanes C, Vericat F, Catenaccio A 2005 Chem. Phys. Lett. 402 428

    [100]

    Silvestrelli P L, Parrinello M 1999 Phys. Rev. Lett. 82 3308

    [101]

    Gregory J K, Clary D C, Liu K, Brown M G, Saykally R J 1997 Science 275 814

    [102]

    Ben Ishai P, Talary M S, Caduff A, Levy E, Feldman Y 2013 Meas. Sci. Technol. 24 102001

    [103]

    Ngai K L, Paluch M 2004 J. Chem. Phys. 120 857

    [104]

    Burakowski A, Glinski J 2012 Chem. Rev. 112 2059

    [105]

    Passynski A 1938 Acta Physicochim. URSS 8 385

    [106]

    Shiio H, Ogawa T, Yoshihashi H 1955 J. Am. Chem. Soc. 77 4980

    [107]

    Yasunaga T, Hirata Y, Kawano Y, Miura M 1964 Bull. Chem. Soc. Jpn. 37 867

    [108]

    Yasunaga T, Usui I, Iwata K, Miura M 1964 Bull. Chem. Soc. Jpn. 37 1658

    [109]

    Impey R W, Madden P A, Mcdonald I R 1983 J. Phys. Chem.-Us 87 5071

    [110]

    Marcus Y, Hefter G 2006 Chem. Rev. 106 4585

    [111]

    van der Vegt N F A, Haldrup K, Roke S, Zheng J R, Lund M, Bakker H J 2016 Chem. Rev. 116 7626

    [112]

    Kraus C A 1956 J. Phys. Chem. 60 129

    [113]

    Leberman R, Soper A K 1995 Nature 378 364

    [114]

    Dixit S, Crain J, Poon W C K, Finney J L, Soper A K 2002 Nature 416 829

    [115]

    Vaneck C L V, Mendel H, Boog W 1957 Discuss. Faraday Soc. 24 200

    [116]

    Neilson G W 2005 Abstr. Pap. Am. Chem. S 230 U2825

    [117]

    Korsunskii V I, Naberukhin Y I 1977 J. Struct. Chem. 18 470

    [118]

    Lenton S, Rhys N H, Towey J J, Soper A K, Dougan L 2017 Nat. Commun. 8 919

    [119]

    Towey J J, Soper A K, Dougan L 2013 Faraday Discuss. 167 159

    [120]

    Wang Q, Zhao L S, Li C X, Cao Z X 2016 Sci. Rep. 6 26831

    [121]

    Migliorati V, Mancini G, Tatoli S, Zitolo A, Filipponi A, de Panfilis S, Di Cicco A, D'Angelo P 2013 Inorg. Chem. 52 1141

    [122]

    Yamaguchi T, Lindqvist O, Boyce J B, Claeson T 1984 Acta Chem. Scand. A 38 423

    [123]

    Wang Q, Huang X F, Li C X, Pan L Q, Wu Z H, Hu T D, Jiang Z, Huang Y Y, Cao Z X, Sun G, Lu K Q 2012 AIP Adv. 2 022107

    [124]

    Marcus Y 1988 Chem. Rev. 88 1475

    [125]

    Knop K, Hoogenboom R, Fischer D, Schubert U S 2010 Angew. Chem. Int. Edit 49 6288

    [126]

    Pochylski M, Aliotta F, Ponterio R C, Saija F, Gapinski J 2010 J. Phys. Chem. B 114 1614

    [127]

    Borodin O, Trouw F, Bedrov D, Smith G D 2002 J. Phys. Chem. B 106 5184

    [128]

    Kushare S K, Terdale S S, Dagade D H, Patil K J 2007 J. Chem. Thermodyn. 39 1125

    [129]

    Zhao L S, Cao Z X, Wang Q 2015 Sci. Rep. 5 15714

    [130]

    Zhao L S, Pan L Q, Cao Z X, Wang Q 2016 J. Phys. Chem. B 120 13112

    [131]

    Zhao L S, Pan L Q, Ji A L, Cao Z X, Wang Q 2016 Chin. Phys. B 25 075101

    [132]

    Yu T X, Zhao L S, Wang Q A, Cao Z X 2017 Chem. Phys. Lett. 677 172

    [133]

    Capaccioli S, Ngai K L 2011 J. Chem. Phys. 135 104504

    [134]

    Cerveny S, Mallamace F, Swenson J, Vogel M, Xu L M 2016 Chem. Rev. 116 7608

    [135]

    Elliott G D, Wang S P, Fuller B J 2017 Cryobiology 76 74

    [136]

    Biggs C I, Bailey T L, Graham B, Stubbs C, Fayter A, Gibson M I 2017 Nat. Commun. 8 1546

    [137]

    Lü J Y, Song Y L, Jiang L, Wang J J 2014 ACS Nano 8 3152

    [138]

    Guo W, Zhao L S, Gao X, Cao Z X, Wang Q 2018 Chin. Phys. B 27 055101

    [139]

    Burikov S A, Dolenko T A, Fadeev V V, Vlasov I I 2007 Laser Phys. 17 1255

    [140]

    Wu J, Lin W, Wang Z, Chen S, Chang Y 2012 Langmuir 28 7436

    [141]

    Lüsse S, Arnold K 1996 Macromolecules 29 4251

    [142]

    Liu K J, Parsons J L 1969 Macromolecules 2 529

    [143]

    Maxfield J, Shepherd I 1975 Polymer 16 505

    [144]

    Shikata T, Takahashi R, Sakamoto A 2006 J. Phys. Chem. B 110 8941

    [145]

    Pochylski M, Aliotta F, Blaszczak Z, Gapiński J 2006 J. Phys. Chem. B 110 20533

    [146]

    Matsuura H, Fukuhara K 1986 Bull. Chem. Soc. Jpn. 59 763

    [147]

    Pochylski M, Aliotta F, Ponterio R, Saija F, Gapinski J 2010 J. Phys. Chem. B 114 1614

    [148]

    Branca C, Magazu S, Maisano G, Migliardo F, Migliardo P, Romeo G 2002 J. Phys. Chem. B 106 10272

    [149]

    Maconnachie A, Vasudevan P, Allen G 1978 Polymer 19 33

    [150]

    Borodin O, Trouw F, Bedrov D, Smith G D 2002 J. Phys. Chem. B 106 5184

    [151]

    Kushare S, Terdale S, Dagade D, Patil K 2007 J. Chem. Thermodyn. 39 1125

    [152]

    Burakowski A, Glinski J 2011 Chem. Rev. 112 2059

    [153]

    Hey M J, Ilett S M 1991 J. Chem. Soc. Faraday T. 87 3671

    [154]

    de Vringer T, Joosten J, Junginger H 1986 Colloid Polym. Sci. 264 623

    [155]

    Shibukawa M, Ichikawa R, Baba T, Sakamoto R, Saito S, Oguma K 2008 Polymer 49 4168

    [156]

    Hillgren A, Aldén M 2004 J. Appl. Polym. Sci. 91 1626

    [157]

    Huang L, Nishinari K 2001 J. Polym. Sci., Part B: Polym. Phys. 39 496

    [158]

    Hager S, Macrury T 1980 J. Appl. Polym. Sci. 25 1559

    [159]

    Hatakeyma T, Kasuga H, Tanaka M, Hatakeyama H 2007 Thermochim. Acta 465 59

    [160]

    Graham N, Nwachuku N, Walsh D 1982 Polymer 23 1345

    [161]

    Graham N, Zulfiqar M, Nwachuku N, Rashid A 1989 Polymer 30 528

    [162]

    Kirinčič S, Klofutar C 1999 Fluid Phase Equilibr. 155 311

    [163]

    Jora M Z, Cardoso M V, Sabadini E 2016 J. Mol. Liq. 222 94

    [164]

    Tasaki K 1996 J. Am. Chem. Soc. 118 8459

    [165]

    Rivas G, Minton A P 2016 Trends Biochem. Sci. 41 970

    [166]

    Ellis R J 2001 Trends Biochem. Sci. 26 597

  • [1]

    Bellissent-Funel M C, Hassanali A, Havenith M, Henchman R, Pohl P, Sterpone F, van der Spoel D, Xu Y, Garcia A E 2016 Chem. Rev. 116 7673

    [2]

    Chaplin M 2006 Nat. Rev. Mol. Cell. Biol. 7 861

    [3]

    McIntyre G I 2006 Med. Hypotheses 66 518

    [4]

    Abramczyk H, Brozek-Pluska B, Krzesniak M, Kopec M, Morawiec-Sztandera A 2014 Spectrochim. Acta A 129 609

    [5]

    Rupley J A, Careri G 1991 Adv. Protein Chem. 41 37

    [6]

    Zhang Y J, Cremer P S 2006 Curr. Opin. Chem. Biol. 10 658

    [7]

    Zou Q, Bennion B J, Daggett V, Murphy K P 2002 J. Am. Chem. Soc. 124 1192

    [8]

    Smolin N, Voloshin V P, Anikeenko A V, Geiger A, Winter R, Medvedev N N 2017 Phys. Chem. Chem. Phys. 19 6345

    [9]

    Marx D, Tuckerman M E, Hutter J, Parrinello M 1999 Nature 397 601

    [10]

    Headrick J M, Diken E G, Walters R S, Hammer N I, Christie R A, Cui J, Myshakin E M, Duncan M A, Johnson M A, Jordan K D 2005 Science 308 1765

    [11]

    Day T J F, Schmitt U W, Voth G A 2000 J. Am. Chem. Soc. 122 12027

    [12]

    Edward J T 1970 J. Chem. Educ. 47 261

    [13]

    Macchioni A, Ciancaleoni G, Zuccaccia C, Zuccaccia D 2008 Chem. Soc. Rev. 37 479

    [14]

    Blandamer M J, Engberts J B F N, Gleeson P T, Reis J C R 2005 Chem. Soc. Rev. 34 440

    [15]

    Zavitsas A A 2001 J. Phys. Chem. B 105 7805

    [16]

    Zavitsas A A 2010 Chem.-Eur. J. 16 5942

    [17]

    Laage D, Elsaesser T, Hynes J T 2017 Chem. Rev. 117 10694

    [18]

    Otting G, Liepinsh E, Wuthrich K 1991 Science 254 974

    [19]

    Shalit A, Ahmed S, Savolainen J, Hamm P 2017 Nat. Chem. 9 273

    [20]

    Omta A W, Kropman M F, Woutersen S, Bakker H J 2003 Science 301 347

    [21]

    Nibali V C, Havenith M 2014 J. Am. Chem. Soc. 136 12800

    [22]

    Bakker H J 2008 Chem. Rev. 108 1456

    [23]

    Frauenfelder H, Fenimore P W, McMahon B H 2002 Biophys. Chem. 98 35

    [24]

    King J T, Kubarych K J 2012 J. Am. Chem. Soc. 134 18705

    [25]

    Wood K, Plazanet M, Gabel F, Kessler B, Oesterhel D, Tobias D J, Zaccai G, Weik M 2007 Proc. Natl. Acad. Sci. USA 104 18049

    [26]

    Chen S H, Liu L, Fratini E, Baglioni P, Faraone A, Mamontov E 2006 Proc. Natl. Acad. Sci. USA 103 9012

    [27]

    Jansson H, Bergman R, Swenson J 2010 Phys. Rev. Lett. 104 017802

    [28]

    Ji M B, Odelius M, Gaffney K J 2010 Science 328 1003

    [29]

    Russo J, Romano F, Tanaka H 2014 Nat. Mater. 13 733

    [30]

    Vekilov P G 2010 Nanoscale 2 2346

    [31]

    Gebauer D, Colfen H 2011 Nano. Today 6 564

    [32]

    Dey A, Bomans P H H, Muller F A, Will J, Frederik P M, de With G, Sommerdijk N A J M 2010 Nat. Mater. 9 1010

    [33]

    Svergun D I, Richard S, Koch M H J, Sayers Z, Kuprin S, Zaccai G 1998 Proc. Natl. Acad. Sci. USA 95 2267

    [34]

    Merzel F, Smith J C 2002 Proc. Natl. Acad. Sci. USA 99 5378

    [35]

    Jenkins H D B, Marcus Y 1995 Chem. Rev. 95 2695

    [36]

    Marcus Y 2009 Chem. Rev. 109 1346

    [37]

    Fayer M D 2012 Accounts Chem. Res. 45 3

    [38]

    Mathurdevre R 1981 Period. Biol. 83 51

    [39]

    Angell C A, Sare E I 1970 J. Chem. Phys. 52 1058

    [40]

    Angell C A 2002 Chem. Rev. 102 2627

    [41]

    Angell C A, Tucker J C 1980 J. Phys. Chem.-Us 84 268

    [42]

    Lusse S, Arnold K 1996 Macromolecules 29 4251

    [43]

    Pochylski M, Aliotta F, Blaszczak Z, Gapinski J 2006 J. Phys. Chem. B 110 20533

    [44]

    Maxfield J, Shepherd I W 1975 Polymer 16 505

    [45]

    Jora M Z, Cardoso M V C, Sabadini E 2016 J. Mol. Liq. 222 94

    [46]

    Okouchi S, Ashida T, Sakaguchi S, Tsuchida K, Ishihara Y, Uedaira H 2002 Bull. Chem. Soc. Jpn. 75 59

    [47]

    Ogiwara Y, Kubota H, Hayashi S, Mitomo N 1969 J. Appl. Polym. Sci. 13 1689

    [48]

    Shikata T, Takahashi R, Sakamoto A 2006 J. Phys. Chem. B 110 8941

    [49]

    Maconnachie A, Vasudevan P, Allen G 1978 Polymer 19 33

    [50]

    Ping Z H, Nguyen Q T, Chen S M, Zhou J Q, Ding Y D 2001 Polymer 42 8461

    [51]

    Tirosh O, Barenholz Y, Katzhendler J, Priev A 1998 Biophys. J. 74 1371

    [52]

    Nakamura K, Hatakeyama T, Hatakeyama H 1981 Text Res. J. 51 607

    [53]

    Hatakeyama T, Nakamura K, Hatakeyama H 1988 Thermochim. Acta 123 153

    [54]

    Devringer T, Joosten J G H, Junginger H E 1986 Colloid. Polym. Sci. 264 623

    [55]

    Tahmasebi A, Yu J L, Su H X, Han Y N, Lucas J, Zheng H L, Wall T 2014 Fuel 135 243

    [56]

    Hager S L, Macrury T B 1980 J. Appl. Polym. Sci. 25 1559

    [57]

    Hey M J, Ilett S M 1991 J. Chem. Soc. Faraday T. 87 3671

    [58]

    Angell C A, Oguni M, Sichina W J 1982 J. Phys. Chem.-Us 86 998

    [59]

    Tombari E, Ferrari C, Salvetti G 1999 Chem. Phys. Lett. 300 749

    [60]

    Koop T, Luo B P, Tsias A, Peter T 2000 Nature 406 611

    [61]

    Holz M 1986 Prog. Nucl. Mag. Res. Sp. 18 327

    [62]

    Raviv U, Klein J 2002 Science 297 1540

    [63]

    Raschke T M 2006 Curr. Opin. Struc. Biol. 16 152

    [64]

    Ohtaki H, Radnai T 1993 Chem. Rev. 93 1157

    [65]

    Malinowski E R, Knapp P S, Feuer B 1966 J. Chem. Phys. 45 4274

    [66]

    Chizhik V I 1997 Mol. Phys. 90 653

    [67]

    Wu J, Lin W F, Wang Z, Chen S F, Chang Y 2012 Langmuir 28 7436

    [68]

    Wu J, Chen S F 2012 Langmuir 28 2137

    [69]

    Stokes R H, Robinson R A 1948 J. Am. Chem. Soc. 70 1870

    [70]

    He Z Y, Xie W J, Liu Z Q, Liu G M, Wang Z W, Gao Y Q, Wang J J 2016 Sci. Adv. 2 e1600345

    [71]

    Ebbinghaus S, Kim S J, Heyden M, Yu X, Heugen U, Gruebele M, Leitner D M, Havenith M 2007 Proc. Natl. Acad. Sci. USA 104 20749

    [72]

    Funkner S, Niehues G, Schmidt D A, Heyden M, Schwaab G, Callahan K M, Tobias D J, Havenith M 2012 J. Am. Chem. Soc. 134 1030

    [73]

    Sharma V, Bohm F, Schwaab G, Havenith M 2014 Phys. Chem. Chem. Phys. 16 25101

    [74]

    Heisler I A, Meech S R 2010 Science 327 857

    [75]

    Kanno H, Yamaguchi T, Ohtaki H 1989 J. Phys. Chem.-Us 93 1695

    [76]

    Baul U, Vemparala S 2015 Phys. Rev. E 91 012114

    [77]

    Falk M, Ford T A 1966 Can. J. Chem. 44 1699

    [78]

    Choe C, Lademann J, Darvin M E 2016 Analyst 141 6329

    [79]

    Uchida T, Hirano T, Ebinuma T, Narita H, Gohara K, Mae S, Matsumoto R 1999 Aiche. J. 45 2641

    [80]

    Kitano H, Sudo K, Ichikawa K, Ide M, Ishihara K 2000 J. Phys. Chem. B 104 11425

    [81]

    Perakis F, de Marco L, Shalit A, Tang F J, Kann Z R, Kuhne T D, Torre R, Bonn M, Nagata Y 2016 Chem. Rev. 116 7590

    [82]

    Mallamace F, Branca C, Broccio M, Corsaro C, Mou C Y, Chen S H 2007 Proc. Natl. Acad. Sci. USA 104 18387

    [83]

    Max J J, Larouche P, Chapados C 2017 J. Mol. Struct. 1149 457

    [84]

    Tao N J, Lindsay S M 1989 Biopolymers 28 1019

    [85]

    Tielrooij K J, Garcia-Araez N, Bonn M, Bakker H J 2010 Science 328 1006

    [86]

    Rezus Y L A, Bakker H J 2007 Phys. Rev. Lett. 99 148301

    [87]

    Moilanen D E, Levinger N E, Spry D B, Fayer M D 2007 J. Am. Chem. Soc. 129 14311

    [88]

    Tielrooij K J, Timmer R L, Bakker H J, Bonn M 2009 Phys. Rev. Lett. 102 198303

    [89]

    Ronne C, Astrand P O, Keiding S R 1999 Phys. Rev. Lett. 82 2888

    [90]

    Tielrooij K J, Paparo D, Piatkowski L, Bakker H J, Bonn M 2009 Biophys. J. 97 2484

    [91]

    Shiraga K, Ogawa Y, Kondo N, Irisawa A, Imamura M 2013 Food Chem. 140 315

    [92]

    Heugen U, Schwaab G, Brundermann E, Heyden M, Yu X, Leitner D M, Havenith, M 2006 Proc. Natl. Acad. Sci. USA 103 12301

    [93]

    Heyden M, Brundermann E, Heugen U, Niehues G, Leitner D M, Havenith M 2008 J. Am. Chem. Soc. 130 5773

    [94]

    Xu Y, Havenith M 2015 J. Chem. Phys. 143 170901

    [95]

    Agieienko V, Buchner R 2016 Phys. Chem. Chem. Phys. 18 2597

    [96]

    Shinyashiki N, Miyara M, Nakano S, Yamamoto W, Ueshima M, Imoto D, Sasaki K, Kita R, Yagihara S 2013 J. Mol. Liq. 181 110

    [97]

    Mashimo S, Kuwabara S, Yagihara S, Higasi K 1987 J. Phys. Chem.-Us 91 6337

    [98]

    Kaatze U 1997 J. Solution Chem. 26 1049

    [99]

    Magallanes C, Vericat F, Catenaccio A 2005 Chem. Phys. Lett. 402 428

    [100]

    Silvestrelli P L, Parrinello M 1999 Phys. Rev. Lett. 82 3308

    [101]

    Gregory J K, Clary D C, Liu K, Brown M G, Saykally R J 1997 Science 275 814

    [102]

    Ben Ishai P, Talary M S, Caduff A, Levy E, Feldman Y 2013 Meas. Sci. Technol. 24 102001

    [103]

    Ngai K L, Paluch M 2004 J. Chem. Phys. 120 857

    [104]

    Burakowski A, Glinski J 2012 Chem. Rev. 112 2059

    [105]

    Passynski A 1938 Acta Physicochim. URSS 8 385

    [106]

    Shiio H, Ogawa T, Yoshihashi H 1955 J. Am. Chem. Soc. 77 4980

    [107]

    Yasunaga T, Hirata Y, Kawano Y, Miura M 1964 Bull. Chem. Soc. Jpn. 37 867

    [108]

    Yasunaga T, Usui I, Iwata K, Miura M 1964 Bull. Chem. Soc. Jpn. 37 1658

    [109]

    Impey R W, Madden P A, Mcdonald I R 1983 J. Phys. Chem.-Us 87 5071

    [110]

    Marcus Y, Hefter G 2006 Chem. Rev. 106 4585

    [111]

    van der Vegt N F A, Haldrup K, Roke S, Zheng J R, Lund M, Bakker H J 2016 Chem. Rev. 116 7626

    [112]

    Kraus C A 1956 J. Phys. Chem. 60 129

    [113]

    Leberman R, Soper A K 1995 Nature 378 364

    [114]

    Dixit S, Crain J, Poon W C K, Finney J L, Soper A K 2002 Nature 416 829

    [115]

    Vaneck C L V, Mendel H, Boog W 1957 Discuss. Faraday Soc. 24 200

    [116]

    Neilson G W 2005 Abstr. Pap. Am. Chem. S 230 U2825

    [117]

    Korsunskii V I, Naberukhin Y I 1977 J. Struct. Chem. 18 470

    [118]

    Lenton S, Rhys N H, Towey J J, Soper A K, Dougan L 2017 Nat. Commun. 8 919

    [119]

    Towey J J, Soper A K, Dougan L 2013 Faraday Discuss. 167 159

    [120]

    Wang Q, Zhao L S, Li C X, Cao Z X 2016 Sci. Rep. 6 26831

    [121]

    Migliorati V, Mancini G, Tatoli S, Zitolo A, Filipponi A, de Panfilis S, Di Cicco A, D'Angelo P 2013 Inorg. Chem. 52 1141

    [122]

    Yamaguchi T, Lindqvist O, Boyce J B, Claeson T 1984 Acta Chem. Scand. A 38 423

    [123]

    Wang Q, Huang X F, Li C X, Pan L Q, Wu Z H, Hu T D, Jiang Z, Huang Y Y, Cao Z X, Sun G, Lu K Q 2012 AIP Adv. 2 022107

    [124]

    Marcus Y 1988 Chem. Rev. 88 1475

    [125]

    Knop K, Hoogenboom R, Fischer D, Schubert U S 2010 Angew. Chem. Int. Edit 49 6288

    [126]

    Pochylski M, Aliotta F, Ponterio R C, Saija F, Gapinski J 2010 J. Phys. Chem. B 114 1614

    [127]

    Borodin O, Trouw F, Bedrov D, Smith G D 2002 J. Phys. Chem. B 106 5184

    [128]

    Kushare S K, Terdale S S, Dagade D H, Patil K J 2007 J. Chem. Thermodyn. 39 1125

    [129]

    Zhao L S, Cao Z X, Wang Q 2015 Sci. Rep. 5 15714

    [130]

    Zhao L S, Pan L Q, Cao Z X, Wang Q 2016 J. Phys. Chem. B 120 13112

    [131]

    Zhao L S, Pan L Q, Ji A L, Cao Z X, Wang Q 2016 Chin. Phys. B 25 075101

    [132]

    Yu T X, Zhao L S, Wang Q A, Cao Z X 2017 Chem. Phys. Lett. 677 172

    [133]

    Capaccioli S, Ngai K L 2011 J. Chem. Phys. 135 104504

    [134]

    Cerveny S, Mallamace F, Swenson J, Vogel M, Xu L M 2016 Chem. Rev. 116 7608

    [135]

    Elliott G D, Wang S P, Fuller B J 2017 Cryobiology 76 74

    [136]

    Biggs C I, Bailey T L, Graham B, Stubbs C, Fayter A, Gibson M I 2017 Nat. Commun. 8 1546

    [137]

    Lü J Y, Song Y L, Jiang L, Wang J J 2014 ACS Nano 8 3152

    [138]

    Guo W, Zhao L S, Gao X, Cao Z X, Wang Q 2018 Chin. Phys. B 27 055101

    [139]

    Burikov S A, Dolenko T A, Fadeev V V, Vlasov I I 2007 Laser Phys. 17 1255

    [140]

    Wu J, Lin W, Wang Z, Chen S, Chang Y 2012 Langmuir 28 7436

    [141]

    Lüsse S, Arnold K 1996 Macromolecules 29 4251

    [142]

    Liu K J, Parsons J L 1969 Macromolecules 2 529

    [143]

    Maxfield J, Shepherd I 1975 Polymer 16 505

    [144]

    Shikata T, Takahashi R, Sakamoto A 2006 J. Phys. Chem. B 110 8941

    [145]

    Pochylski M, Aliotta F, Blaszczak Z, Gapiński J 2006 J. Phys. Chem. B 110 20533

    [146]

    Matsuura H, Fukuhara K 1986 Bull. Chem. Soc. Jpn. 59 763

    [147]

    Pochylski M, Aliotta F, Ponterio R, Saija F, Gapinski J 2010 J. Phys. Chem. B 114 1614

    [148]

    Branca C, Magazu S, Maisano G, Migliardo F, Migliardo P, Romeo G 2002 J. Phys. Chem. B 106 10272

    [149]

    Maconnachie A, Vasudevan P, Allen G 1978 Polymer 19 33

    [150]

    Borodin O, Trouw F, Bedrov D, Smith G D 2002 J. Phys. Chem. B 106 5184

    [151]

    Kushare S, Terdale S, Dagade D, Patil K 2007 J. Chem. Thermodyn. 39 1125

    [152]

    Burakowski A, Glinski J 2011 Chem. Rev. 112 2059

    [153]

    Hey M J, Ilett S M 1991 J. Chem. Soc. Faraday T. 87 3671

    [154]

    de Vringer T, Joosten J, Junginger H 1986 Colloid Polym. Sci. 264 623

    [155]

    Shibukawa M, Ichikawa R, Baba T, Sakamoto R, Saito S, Oguma K 2008 Polymer 49 4168

    [156]

    Hillgren A, Aldén M 2004 J. Appl. Polym. Sci. 91 1626

    [157]

    Huang L, Nishinari K 2001 J. Polym. Sci., Part B: Polym. Phys. 39 496

    [158]

    Hager S, Macrury T 1980 J. Appl. Polym. Sci. 25 1559

    [159]

    Hatakeyma T, Kasuga H, Tanaka M, Hatakeyama H 2007 Thermochim. Acta 465 59

    [160]

    Graham N, Nwachuku N, Walsh D 1982 Polymer 23 1345

    [161]

    Graham N, Zulfiqar M, Nwachuku N, Rashid A 1989 Polymer 30 528

    [162]

    Kirinčič S, Klofutar C 1999 Fluid Phase Equilibr. 155 311

    [163]

    Jora M Z, Cardoso M V, Sabadini E 2016 J. Mol. Liq. 222 94

    [164]

    Tasaki K 1996 J. Am. Chem. Soc. 118 8459

    [165]

    Rivas G, Minton A P 2016 Trends Biochem. Sci. 41 970

    [166]

    Ellis R J 2001 Trends Biochem. Sci. 26 597

  • [1] 侯磊, 王俊喃, 王磊, 施卫. α-乳糖水溶液太赫兹吸收光谱实验研究及模拟分析. 物理学报, 2021, 70(24): 243202. doi: 10.7498/aps.70.20211716
    [2] 胡钧, 高嶷. 界面水与催化. 物理学报, 2019, 68(1): 016803. doi: 10.7498/aps.68.20182180
    [3] 叶树集, 李传召, 张佳慧, 谈军军, 罗毅. 生物分子结合水的结构与动力学研究进展. 物理学报, 2019, 68(1): 013101. doi: 10.7498/aps.68.20181273
    [4] 孙艳丽, 王华光, 张泽新. 椭球与圆球混合胶体体系的玻璃化转变. 物理学报, 2018, 67(10): 106401. doi: 10.7498/aps.67.20180264
    [5] 贾琳, 王理林, 申洁楠, 张忠明, 李俊杰, 王锦程, 王志军. 聚乙烯醇水溶液二维定向凝固的微观组织演化. 物理学报, 2017, 66(19): 196402. doi: 10.7498/aps.66.196402
    [6] 王曦, 黎明, 叶方富, 周昕. DNA超分子水凝胶的粗粒化建模与模拟. 物理学报, 2017, 66(15): 150201. doi: 10.7498/aps.66.150201
    [7] 欧阳世根. 过冷水溶液中的空间光孤子. 物理学报, 2017, 66(9): 090505. doi: 10.7498/aps.66.090505
    [8] 林生军, 黄印, 谢东日, 闵道敏, 王威望, 杨柳青, 李盛涛. 环氧树脂高温分子链松弛与玻璃化转变特性. 物理学报, 2016, 65(7): 077701. doi: 10.7498/aps.65.077701
    [9] 于同旭, 张文彬, 纪爱玲, 王强. 受限钠盐水溶液孔外结晶现象. 物理学报, 2016, 65(8): 089201. doi: 10.7498/aps.65.089201
    [10] 朱光正, 郭连波, 郝中骐, 李常茂, 沈萌, 李阔湖, 李祥友, 刘建国, 曾晓雁, 陆永枫. 气雾化辅助激光诱导击穿光谱检测水中的痕量金属元素. 物理学报, 2015, 64(2): 024212. doi: 10.7498/aps.64.024212
    [11] 周超, 陈伟中, 崔炜程. 稀土盐水溶液单泡声致发光中的特征光谱. 物理学报, 2013, 62(8): 087805. doi: 10.7498/aps.62.087805
    [12] 王丰, 贾国柱, 刘莉, 刘凤海, 梁文海. 温度相关的微波频率下氯化钠水溶液介电特性. 物理学报, 2013, 62(4): 048701. doi: 10.7498/aps.62.048701
    [13] 李占龙, 王一丁, 周密, 门志伟, 孙成林, 里佐威. 水的低频受激拉曼散射. 物理学报, 2012, 61(6): 064217. doi: 10.7498/aps.61.064217
    [14] 陈威, 曹万强. 弛豫铁电体弥散相变的玻璃化特性研究. 物理学报, 2012, 61(9): 097701. doi: 10.7498/aps.61.097701
    [15] 赵兴宇, 王丽娜, 樊小辉, 张丽丽, 卫来, 张晋鲁, 黄以能. 玻璃化转变的分子串模型中分子串弛豫模式的计算机模拟. 物理学报, 2011, 60(3): 036403. doi: 10.7498/aps.60.036403
    [16] 盛正卯, 骆军委. 利用扩展系综法计算水的自由能. 物理学报, 2003, 52(9): 2342-2346. doi: 10.7498/aps.52.2342
    [17] 李健, 张烨, 张声春. 非晶态聚合物主转变弛豫峰与玻璃化转变过程的相关性研究. 物理学报, 1996, 45(8): 1359-1365. doi: 10.7498/aps.45.1359
    [18] 程忠阳, 姚熹, 张良莹. 弛豫型铁电体铌镁酸铅陶瓷的玻璃化行为研究. 物理学报, 1996, 45(6): 1026-1032. doi: 10.7498/aps.45.1026
    [19] 冯若. 聚丙烯酰胺水溶液的超声研究. 物理学报, 1980, 29(7): 940-944. doi: 10.7498/aps.29.940
    [20] 碘酸锂晶体研究小组. α-和β-碘酸锂晶体在水溶液中的形成条件和相对稳定性. 物理学报, 1975, 24(2): 91-96. doi: 10.7498/aps.24.91
计量
  • 文章访问数:  3802
  • PDF下载量:  96
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-20
  • 修回日期:  2018-11-13
  • 刊出日期:  2019-01-05

水溶液中结合水的定义与量化

  • 中国科学院物理研究所, 北京 100190

摘要: 水溶液中溶质的结合水具有不同于远离溶质的自由水的结构和性质.结合水的存在对水和溶质结构和动力学性质均具有显著甚至决定性的影响.然而,对结合水动力学和热力学性质的定量理解在诸多方面一直存在争议甚至严重分歧,其中重点包括如何定义和量化结合水,如何表征结合水和自由水的动力学差别,结合水如何参与生物大分子各种生物功能过程,以及溶质或界面影响结合水结构与性质的途径等.给出结合水定义的物理学依据和量化方法,是深入理解上述问题的第一步.本文简述了各种不同谱学方法定义结合水的基本原理及量化的困难,强调具有不同时间和空间响应尺度的测试方法所得结合水数不必完全可比.此外,系列水溶液物性随浓度升高会明显改变其浓度依赖关系,相应拐点浓度常被用于量化稀溶液中的溶质结合水数.我们近期研究的水溶液玻璃化转变温度-浓度关系,为结合水的定义、量化和水溶液的三区划分提供了物理依据,同时揭示了上述利用性质-浓度关系拐点浓度量化结合水方法的不足.

English Abstract

参考文献 (166)

目录

    /

    返回文章
    返回