搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

关于闭合及偏置PCM结构约束带状电子注可行性的研究

赵鼎

引用本文:
Citation:

关于闭合及偏置PCM结构约束带状电子注可行性的研究

赵鼎
cstr: 32037.14.aps.59.1712

Research on feasibility of closed and offset PCM focusing structures for sheet electron beams

Zhao Ding
cstr: 32037.14.aps.59.1712
PDF
导出引用
  • 通过理论分析和数值计算证明了闭合PCM结构可以在窄边和宽边两个横方向上对接近真实情形的带状注束流进行有效约束,实现电子注的长距离稳定传输.提出了匹配电子注宽边方向横向磁聚焦力与带状注内空间电荷力的方法,这可用于确定闭合PCM聚焦结构的纵向周期长度以及截面尺寸.所做计算还显示出闭合PCM结构横截面的宽边方向尺度可以独立调节以达到最优的匹配.此外,进一步证明了偏置PCM结构不能有效约束带状电子注.本工作表明闭合PCM结构用于限制带状注束流具有很大潜力并且有助于指导实际的工程实践.
    Using theoretical analysis and numerical calculation, it has been demonstrated that the closed periodic cusped magnetic (PCM) field can effectively confine the sheet electron beam in two transverse directions simultaneously to realize the stable long distance transport, where the beam cross-section has an attainable shape of the state of the art. Moreover, the method for matching the transverse magnetic focusing force and the inner space charge force in the wide dimension of the sheet beam is given, which can be used to determine the longitudinal periodic length and the cross section shape of the closed PCM structure. The calculation has also shown that the optimum focusing can be acquired through adjusting the width of the closed PCM structure independently. And besides, it has been proven that the offset PCM structure is not a good choice for sheet beams’ confinement. The work presented in the paper indicates that the closed PCM structure is very promising, and it’s helpful for guiding the practical engineering design.
    • 基金项目: 国家自然科学基金(批准号: 60801031和10775139)及中国科学院知识创新项目资助的课题.
    [1]

    [1]Read M E, Jabotinski V, Miram G, Ives L 2005 IEEE Trans. Plasma Sci. 33 647

    [2]

    [2]Scheitrum G 2005 High Energy Density and High Power RF, AIP Conf. Proc. 807 (American Institute of Physics) p120

    [3]

    [3]Scheitrum G, Caryotakis G, Burke A, Jensen A, Jongewaard E, Krasnykh A, Neubauer M, Phillips R, Rauenbuehler K 2004 Conference Digest of the 2004 Joint 29th International Conference on Infrared and Millimeter Waves and 12th International Conference on Terahertz Electronics (IEEE) p525

    [4]

    [4]Humphries S, Russell S, Carlsten B, Earley L, Ferguson P 2004 Phys. Rev. ST Accel. Beams 7 060401

    [5]

    [5]Russel S J, Wang Z F, Haynes W B, Wheat R M, Jr., Carlsten B E, Earley L M, Humphries S, Jr., Ferguson P 2005 Phys. Rev. ST Accel. Beams 8 080401

    [6]

    [6]Booske J H, McVey B D, Antonsen T M, Jr. 1993 J. Appl. Phys. 73 4140

    [7]

    [7]Booske J H, Basten M A, Kumbasar A H, Antonsen T M, Jr., Bidwell S W, Carmel Y, Destler W W, Granatstein V L, Radack D J 1994 Phys. Plasmas 1 1714

    [8]

    [8]Basten M A, Booske J H 1999 J. Appl. Phys. 85 6313

    [9]

    [9]Booske J H, Basten M A 1999 IEEE Trans. Plasma Sci. 27 134

    [10]

    ]Carlsten B E, Earley L M, Krawczyk F L, Russell S J, Potter J M, Ferguson P, Humphries S, Jr. 2005 Phys. Rev. ST Accel. Beams 8 062002

    [11]

    ]Mendel J T, Quate C F, Yocom W H 1954 Proc. IRE 42 800

    [12]

    ]True R 1984 IEEE Trans. Electron Devices 31 353

  • [1]

    [1]Read M E, Jabotinski V, Miram G, Ives L 2005 IEEE Trans. Plasma Sci. 33 647

    [2]

    [2]Scheitrum G 2005 High Energy Density and High Power RF, AIP Conf. Proc. 807 (American Institute of Physics) p120

    [3]

    [3]Scheitrum G, Caryotakis G, Burke A, Jensen A, Jongewaard E, Krasnykh A, Neubauer M, Phillips R, Rauenbuehler K 2004 Conference Digest of the 2004 Joint 29th International Conference on Infrared and Millimeter Waves and 12th International Conference on Terahertz Electronics (IEEE) p525

    [4]

    [4]Humphries S, Russell S, Carlsten B, Earley L, Ferguson P 2004 Phys. Rev. ST Accel. Beams 7 060401

    [5]

    [5]Russel S J, Wang Z F, Haynes W B, Wheat R M, Jr., Carlsten B E, Earley L M, Humphries S, Jr., Ferguson P 2005 Phys. Rev. ST Accel. Beams 8 080401

    [6]

    [6]Booske J H, McVey B D, Antonsen T M, Jr. 1993 J. Appl. Phys. 73 4140

    [7]

    [7]Booske J H, Basten M A, Kumbasar A H, Antonsen T M, Jr., Bidwell S W, Carmel Y, Destler W W, Granatstein V L, Radack D J 1994 Phys. Plasmas 1 1714

    [8]

    [8]Basten M A, Booske J H 1999 J. Appl. Phys. 85 6313

    [9]

    [9]Booske J H, Basten M A 1999 IEEE Trans. Plasma Sci. 27 134

    [10]

    ]Carlsten B E, Earley L M, Krawczyk F L, Russell S J, Potter J M, Ferguson P, Humphries S, Jr. 2005 Phys. Rev. ST Accel. Beams 8 062002

    [11]

    ]Mendel J T, Quate C F, Yocom W H 1954 Proc. IRE 42 800

    [12]

    ]True R 1984 IEEE Trans. Electron Devices 31 353

  • [1] 蒋铭阳, 李九生. 弧度与旋转共同诱导相位调控太赫兹超表面. 物理学报, 2025, 74(2): 028701. doi: 10.7498/aps.74.20241465
    [2] 段美刚, 赵映, 左浩毅. 基于迭代算法的不同状态散射光场聚焦. 物理学报, 2024, 73(12): 124203. doi: 10.7498/aps.73.20231991
    [3] 覃赵福, 陈浩, 胡涛政, 陈卓, 王振林. 基于导波驱动相变材料超构表面的基波及二次谐波聚焦. 物理学报, 2022, 71(3): 034208. doi: 10.7498/aps.71.20211596
    [4] 刘康, 何韬, 刘涛, 李国卿, 田博, 王佳怡, 杨树明. 激光照明条件对超振荡平面透镜聚焦性能的影响. 物理学报, 2020, 69(18): 184215. doi: 10.7498/aps.69.20200577
    [5] 李唐景, 梁建刚, 李海鹏, 牛雪彬, 刘亚峤. 基于单层线-圆极化转换聚焦超表面的宽带高增益圆极化天线设计. 物理学报, 2017, 66(6): 064102. doi: 10.7498/aps.66.064102
    [6] 张诚, 方龙杰, 朱建华, 左浩毅, 高福华, 庞霖. 四元裂解位相调制实现相干光通过散射介质聚焦. 物理学报, 2017, 66(11): 114202. doi: 10.7498/aps.66.114202
    [7] 王吉明, 赫崇君, 刘友文, 杨凤, 田威, 吴彤. 基于可调谐复振幅滤波器的超长焦深矢量光场. 物理学报, 2016, 65(4): 044202. doi: 10.7498/aps.65.044202
    [8] 侯海生, 王光明, 李海鹏, 蔡通, 郭文龙. 超薄宽带平面聚焦超表面及其在高增益天线中的应用. 物理学报, 2016, 65(2): 027701. doi: 10.7498/aps.65.027701
    [9] 蒋忠君, 刘建军. 超振荡及其远场聚焦成像研究进展. 物理学报, 2016, 65(23): 234203. doi: 10.7498/aps.65.234203
    [10] 谷文浩, 常胜江, 范飞, 张选洲. 基于锑化铟亚波长阵列结构的太赫兹聚焦器件. 物理学报, 2016, 65(1): 010701. doi: 10.7498/aps.65.010701
    [11] 陈直, 许良, 陈荣昌, 杜国浩, 邓彪, 谢红兰, 肖体乔. Kinoform单透镜的硬X射线聚焦性能. 物理学报, 2015, 64(16): 164104. doi: 10.7498/aps.64.164104
    [12] 李嘉明, 唐鹏, 王佳见, 黄涛, 林峰, 方哲宇, 朱星. 阿基米德螺旋微纳结构中的表面等离激元聚焦. 物理学报, 2015, 64(19): 194201. doi: 10.7498/aps.64.194201
    [13] 赖剑强, 魏彦玉, 许雄, 沈飞, 刘洋, 刘漾, 黄民智, 唐涛, 宫玉彬. 140GHz大功率交错双栅行波管的设计和模拟研究. 物理学报, 2012, 61(17): 178501. doi: 10.7498/aps.61.178501
    [14] 王铮, 高春清, 辛璟焘. 高阶矢量光束高数值孔径聚焦特性的研究. 物理学报, 2012, 61(12): 124209. doi: 10.7498/aps.61.124209
    [15] 刘洋, 徐进, 许雄, 沈飞, 魏彦玉, 黄民智, 唐涛, 王文祥, 宫玉彬. V形曲折矩形槽慢波结构的研究. 物理学报, 2012, 61(15): 154208. doi: 10.7498/aps.61.154208
    [16] 孙芳, 曾周末, 王晓媛, 靳世久, 詹湘琳. 界面条件下线型超声相控阵声场特性研究. 物理学报, 2011, 60(9): 094301. doi: 10.7498/aps.60.094301
    [17] 于永江, 陈建农, 闫金良, 王菲菲. 聚焦径向调制Bessel-Gaussian光束实现亚波长尺寸纵向偏振光束. 物理学报, 2011, 60(4): 044205. doi: 10.7498/aps.60.044205
    [18] 阮存军, 王树忠, 韩莹, 李庆生. 高传输通过率带状电子注聚焦与传输特性的研究. 物理学报, 2011, 60(8): 084105. doi: 10.7498/aps.60.084105
    [19] 李敏, 张志友, 石莎, 杜惊雷. 亚波长金属聚焦透镜结构参数的优化与分析. 物理学报, 2010, 59(2): 958-963. doi: 10.7498/aps.59.958
    [20] 杨玉平, 施宇蕾, 严 伟, 徐新龙, 马士华, 汪 力. 一种新型THz显微探测技术. 物理学报, 2005, 54(9): 4079-4083. doi: 10.7498/aps.54.4079
计量
  • 文章访问数:  8535
  • PDF下载量:  737
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-05-15
  • 修回日期:  2009-06-01
  • 刊出日期:  2010-03-15

/

返回文章
返回