搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

溶剂中一、二维电荷转移分子二阶非线性光学性质理论研究

李明雪 韩奎 李海鹏 黄志敏 钟琪 童星 吴琼华

引用本文:
Citation:

溶剂中一、二维电荷转移分子二阶非线性光学性质理论研究

李明雪, 韩奎, 李海鹏, 黄志敏, 钟琪, 童星, 吴琼华

Theoretical study of the second-order nonlinear optical properties of one- and two-dimensional charge transfer molecules in solvents

Li Ming-Xue, Han Kui, Li Hai-Peng, Huang Zhi-Min, Zhong Qi, Tong Xing, Wu Qiong-Hua
PDF
导出引用
  • 以典型的一、二维电荷转移分子, 对硝基苯胺(pNA), 1, 3-二氨基-4, 6-二硝基苯(DADB)分子为例, 运用密度泛函理论(DFT)B3LYP和含时耦合微扰(TDHF)方法在6-31+G(d, p)水平上研究了溶剂和入射光频率对目标分子的非线性光学性质的影响. 研究发现溶剂分子对分子一阶超极化率β和紫外吸收光谱的影响很大, 但对一阶超极化率各向异性比η和退偏比D的影响很小, 这是由于随着溶剂相对介电常数的增加, 一阶超极化率的分量︱βxxy︱和︱βy
    The solvent-dependent and frequency-dependent nonlinear optical (NLO) properties of one-dimensional charge transfer (1DCT) molecule, p-nitroaniline (pNA) and two-dimensional charge transfer (2DCT) molecule, 1,3-diamino-4,6- dinitrobenzen (DADB) have been studied by using the density functional theory (DFT) and time-dependent coupled perturbed Hartree-Fork (TDHF) method, respectively. The reasons of the influence of the solvent polarity and incident light frequency on the NLO properties for 1DCT and 2DCT molecules were also discussed. Theoretical results demonstrate that the first hyperpolarizability β and ultraviolet spectra strongly depend on the dielectric constant ε of solvent, but solvent polarity has little effect on the anisotropy ratio η and depolarization ratio D due to the linear relationship between ︱βxxy︱ and ︱βyyy︱ with the increase of the solvent dielectric constant ε. In addition, the incident frequency has a great influence on β,η and D . It is found that the solvent effect and the frequency dispersion effect should be considered in calculations for obtaining accurate results.
    • 基金项目: 中国矿业大学科技基金(批准号: OK061064, OK090218)资助的课题.
    [1]

    [1]Liang X R, Zhao B, Zhou Z H 2006 Acta Phys. Sin. 55 723 (in Chinese)[梁小蕊、赵波、周志华 2006 物理学报 55 723]

    [2]

    [2]Huang X M, Tao L M, Guo Y H, Gao Y, Wang C K 2007 Acta Phys. Sin. 56 2570 (in Chinese)[黄晓明、陶丽敏、郭雅慧、高云、王传奎 2007 物理学报 56 2570]

    [3]

    [3]Li H P, Han K, Lu Z P, Shen X P, Huang Z M, Zhang W T, Bai L 2006 Acta Phys. Sin. 55 1827 (in Chinese)[李海鹏、韩奎、逯振平、沈晓鹏、黄志敏、张文涛、白磊 2006 物理学报 55 1827]

    [4]

    [4]Wang L, Hu H F, Wei J W, Ceng H, Yu Y S, Wang Z Y, Zhang L J 2008 Acta Phys. Sin. 57 2987 (in Chinese)[王磊、胡惠芳、韦建卫、曾晖、于滢溹、王志勇、张丽娟 2008 物理学报 57 2987]

    [5]

    [5]Lu Z P, Han K, Li H P, Zhang W T, Huang Z M, Shen X P, Zhang Z H, Bai L 2007 Acta Phys. Sin. 56 5843 (in Chinese)[ 逯振平、韩奎、李海鹏、张文涛、黄志敏、沈晓鹏、张兆慧、白磊 2007 物理学报 56 5843]

    [6]

    [6]Gao C, Xiao Q, Qiu S J, Hou C Q, Xu P P, Liu J Q 2009 Acta Phys. Sin. 58 3578 (in Chinese)[ 高潮、肖奇、邱少君、侯超奇、许培培、刘建群 2009 物理学报 58 3578]

    [7]

    [7]Su Y, Wang C K, Wang Y H, Tao L M 2004 Acta Phys. Sin. 53 2112 (in Chinese)[苏燕、王传奎、王彦华、陶丽敏 2004 物理学报 53 2112]

    [8]

    [8]Shelton D P, Rice J E 1994 Chem. Rev. 94 3

    [9]

    [9]Teng C C, Garito A F 1983 Phys. Rev.B 28 6766

    [10]

    ]Woodford J N, Pauley M A, Wang C H 1997 J. Phys. Chem. A 101 1989

    [11]

    ]Wang C K, Wang Y H, Su Y, Lou Y 2003 J. Chem. Phys. 119 4409

    [12]

    ]Wang P, Zhu P W, Wu W, Kang H, Ye C 1999 Phys. Chem. Chem. Phys. 1 3519

    [13]

    ]Bella S D, Fragalà I 2001 Chem. Eur. J. 7 3738

    [14]

    ]Luo Y, Lindgren M, gren H 1998 Opt. Mater. 9 216

    [15]

    ]Zhang C Z, Lu C, Zhu J, Wang C Y, Lu G Y, Wang C S, Wu D L, Liu F, Cui Y P 2008 Chem. Mater. 20 4628

    [16]

    ]Lee C, Yang W, Parr R G 1998 Phys. Rev. B 37 785

    [17]

    ]Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Montgomery J A 2003 Gaussian 03, Revision B. 03 Gaussian, Inc., Pittsburgh PA

    [18]

    ]Brasselet S, Zyss J 1998 J. Opt. Soc. Am. B 15 257

    [19]

    ]Daniel C, Dupuis M 1990 Chem. Phys. Lett. 171 209

    [20]

    ]Zhu W H, Wu G S 2002 Chem. Phys. Lett. 358 1

    [21]

    ]Marder S R, Cheng L T, Tiemann B G, Friedli A C, Desce M B, Perry J W, Skindhj J 1994 Science 263 511

    [22]

    ]St?helin M, Burland D M, Rice J E 1992 Chem. Phys. Lett. 191 245

    [23]

    ]Forbes W F 1957 Can. J. Chem. 36 1350

    [24]

    ]Zyss J, Oudar J L 1982 Phys. Rev. A 26 2028

    [25]

    ]Heesink G J T, Ruiter A G T, van Hulst N F, Blger B 1993 Phys. Rev. Lett. 71 999

    [26]

    ]Levine B F, Bethea C G 1976 J. Chem. Phys. 65 2429

  • [1]

    [1]Liang X R, Zhao B, Zhou Z H 2006 Acta Phys. Sin. 55 723 (in Chinese)[梁小蕊、赵波、周志华 2006 物理学报 55 723]

    [2]

    [2]Huang X M, Tao L M, Guo Y H, Gao Y, Wang C K 2007 Acta Phys. Sin. 56 2570 (in Chinese)[黄晓明、陶丽敏、郭雅慧、高云、王传奎 2007 物理学报 56 2570]

    [3]

    [3]Li H P, Han K, Lu Z P, Shen X P, Huang Z M, Zhang W T, Bai L 2006 Acta Phys. Sin. 55 1827 (in Chinese)[李海鹏、韩奎、逯振平、沈晓鹏、黄志敏、张文涛、白磊 2006 物理学报 55 1827]

    [4]

    [4]Wang L, Hu H F, Wei J W, Ceng H, Yu Y S, Wang Z Y, Zhang L J 2008 Acta Phys. Sin. 57 2987 (in Chinese)[王磊、胡惠芳、韦建卫、曾晖、于滢溹、王志勇、张丽娟 2008 物理学报 57 2987]

    [5]

    [5]Lu Z P, Han K, Li H P, Zhang W T, Huang Z M, Shen X P, Zhang Z H, Bai L 2007 Acta Phys. Sin. 56 5843 (in Chinese)[ 逯振平、韩奎、李海鹏、张文涛、黄志敏、沈晓鹏、张兆慧、白磊 2007 物理学报 56 5843]

    [6]

    [6]Gao C, Xiao Q, Qiu S J, Hou C Q, Xu P P, Liu J Q 2009 Acta Phys. Sin. 58 3578 (in Chinese)[ 高潮、肖奇、邱少君、侯超奇、许培培、刘建群 2009 物理学报 58 3578]

    [7]

    [7]Su Y, Wang C K, Wang Y H, Tao L M 2004 Acta Phys. Sin. 53 2112 (in Chinese)[苏燕、王传奎、王彦华、陶丽敏 2004 物理学报 53 2112]

    [8]

    [8]Shelton D P, Rice J E 1994 Chem. Rev. 94 3

    [9]

    [9]Teng C C, Garito A F 1983 Phys. Rev.B 28 6766

    [10]

    ]Woodford J N, Pauley M A, Wang C H 1997 J. Phys. Chem. A 101 1989

    [11]

    ]Wang C K, Wang Y H, Su Y, Lou Y 2003 J. Chem. Phys. 119 4409

    [12]

    ]Wang P, Zhu P W, Wu W, Kang H, Ye C 1999 Phys. Chem. Chem. Phys. 1 3519

    [13]

    ]Bella S D, Fragalà I 2001 Chem. Eur. J. 7 3738

    [14]

    ]Luo Y, Lindgren M, gren H 1998 Opt. Mater. 9 216

    [15]

    ]Zhang C Z, Lu C, Zhu J, Wang C Y, Lu G Y, Wang C S, Wu D L, Liu F, Cui Y P 2008 Chem. Mater. 20 4628

    [16]

    ]Lee C, Yang W, Parr R G 1998 Phys. Rev. B 37 785

    [17]

    ]Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Montgomery J A 2003 Gaussian 03, Revision B. 03 Gaussian, Inc., Pittsburgh PA

    [18]

    ]Brasselet S, Zyss J 1998 J. Opt. Soc. Am. B 15 257

    [19]

    ]Daniel C, Dupuis M 1990 Chem. Phys. Lett. 171 209

    [20]

    ]Zhu W H, Wu G S 2002 Chem. Phys. Lett. 358 1

    [21]

    ]Marder S R, Cheng L T, Tiemann B G, Friedli A C, Desce M B, Perry J W, Skindhj J 1994 Science 263 511

    [22]

    ]St?helin M, Burland D M, Rice J E 1992 Chem. Phys. Lett. 191 245

    [23]

    ]Forbes W F 1957 Can. J. Chem. 36 1350

    [24]

    ]Zyss J, Oudar J L 1982 Phys. Rev. A 26 2028

    [25]

    ]Heesink G J T, Ruiter A G T, van Hulst N F, Blger B 1993 Phys. Rev. Lett. 71 999

    [26]

    ]Levine B F, Bethea C G 1976 J. Chem. Phys. 65 2429

  • [1] 沈环, 华林强, 魏政荣. 尿嘧啶激发态动力学溶剂效应的飞秒瞬态吸收光谱研究. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20220515
    [2] 张来斌, 任廷琦. 新型鸟嘌呤类似物y-鸟嘌呤及其异构体电子光谱性质的理论研究. 物理学报, 2015, 64(7): 077101. doi: 10.7498/aps.64.077101
    [3] 徐胜楠, 刘天元, 孙美娇, 李硕, 房文汇, 孙成林, 里佐威. 溶剂效应对β胡萝卜素分子电子振动耦合的影响. 物理学报, 2014, 63(16): 167801. doi: 10.7498/aps.63.167801
    [4] 薛思敏. 二重微分散射截面中非一阶效应的理论研究. 物理学报, 2013, 62(16): 163401. doi: 10.7498/aps.62.163401
    [5] 吴咏玲, 刘天元, 孙成林, 曲冠男, 里佐威. 分子极性对类胡萝卜素共振拉曼光谱的影响. 物理学报, 2013, 62(3): 037801. doi: 10.7498/aps.62.037801
    [6] 赵珂, 刘朋伟, 韩广超. 分子动力学模拟方法在非线性光学中的应用. 物理学报, 2011, 60(12): 124216. doi: 10.7498/aps.60.124216
    [7] 韩奎, 李明雪, 李海鹏, 吴玉喜, 唐刚, 吴琼华, 童星, 钟琪. 二维电荷转移结构轮烯衍生物光学性质理论研究. 物理学报, 2010, 59(9): 6250-6255. doi: 10.7498/aps.59.6250
    [8] 朱菁, 吕昌贵, 洪旭升, 崔一平. 分子一阶超极化率溶剂效应的理论研究. 物理学报, 2010, 59(4): 2850-2854. doi: 10.7498/aps.59.2850
    [9] 胥建卫, 王顺金. 电子的相对论平均场理论与一阶、二阶Rashba效应. 物理学报, 2009, 58(7): 4878-4882. doi: 10.7498/aps.58.4878
    [10] 曹彪, 左剑, 里佐威, 欧阳顺利, 高淑琴, 陆国会, 姜永恒. CS2在C6H6中的弱费米共振特性及对Bertran公式修正. 物理学报, 2009, 58(5): 3538-3542. doi: 10.7498/aps.58.3538
    [11] 王 磊, 胡慧芳, 韦建卫, 曾 晖, 于滢潆, 王志勇, 张丽娟. 有机分子二苯乙烯系列衍生物第一超极化率的理论研究. 物理学报, 2008, 57(5): 2987-2993. doi: 10.7498/aps.57.2987
    [12] 额尔敦朝鲁. 温度和极化子效应对准二维强耦合激子基态的影响. 物理学报, 2008, 57(1): 416-424. doi: 10.7498/aps.57.416
    [13] 杨 欢, 高 矿, 吴兴举, 张穗萌. 氢原子(e,2e)反应中BBK模型非一阶效应的理论研究. 物理学报, 2008, 57(3): 1640-1647. doi: 10.7498/aps.57.1640
    [14] 韩清珍, 耿春宇, 赵月红, 戚传松, 温 浩. 溶剂对镍连二硫烯与乙烯反应的影响. 物理学报, 2008, 57(1): 96-102. doi: 10.7498/aps.57.96
    [15] 吴伟才, 周印华, 温善鹏, 韩 靓, 田文晶. 溶剂效应对聚苯撑乙烯掺杂苝二酰亚胺太阳电池性能的影响. 物理学报, 2007, 56(8): 5003-5008. doi: 10.7498/aps.56.5003
    [16] 刘照军, 吴国祯. 亚乙基硫脲的表面增强拉曼极化率研究:电磁和电荷转移机制. 物理学报, 2006, 55(12): 6315-6319. doi: 10.7498/aps.55.6315
    [17] 李海鹏, 韩 奎, 逯振平, 沈晓鹏, 黄志敏, 张文涛, 白 磊. 有机分子第一超极化率色散效应和双光子共振增强理论研究. 物理学报, 2006, 55(4): 1827-1831. doi: 10.7498/aps.55.1827
    [18] 胡国琦, 张训生, 鲍德松, 唐孝威. 二维颗粒流通道宽度效应的分子动力学模拟. 物理学报, 2004, 53(12): 4277-4281. doi: 10.7498/aps.53.4277
    [19] 苗润才, 傅克德, 李向, 刘西社, 张长安. 金属银表面-分子体系中电荷转移效应的形成过程. 物理学报, 1991, 40(3): 454-458. doi: 10.7498/aps.40.454
    [20] 苗润才, 潘多海, 张鹏翔, 李秀英. 金属银表面-分子体系中的电荷转移效应. 物理学报, 1988, 37(11): 1870-1875. doi: 10.7498/aps.37.1870
计量
  • 文章访问数:  5503
  • PDF下载量:  1060
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-05-31
  • 修回日期:  2009-06-10
  • 刊出日期:  2010-03-15

溶剂中一、二维电荷转移分子二阶非线性光学性质理论研究

  • 1. 中国矿业大学理学院物理系,徐州 221116
    基金项目: 中国矿业大学科技基金(批准号: OK061064, OK090218)资助的课题.

摘要: 以典型的一、二维电荷转移分子, 对硝基苯胺(pNA), 1, 3-二氨基-4, 6-二硝基苯(DADB)分子为例, 运用密度泛函理论(DFT)B3LYP和含时耦合微扰(TDHF)方法在6-31+G(d, p)水平上研究了溶剂和入射光频率对目标分子的非线性光学性质的影响. 研究发现溶剂分子对分子一阶超极化率β和紫外吸收光谱的影响很大, 但对一阶超极化率各向异性比η和退偏比D的影响很小, 这是由于随着溶剂相对介电常数的增加, 一阶超极化率的分量︱βxxy︱和︱βy

English Abstract

参考文献 (26)

目录

    /

    返回文章
    返回