搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

182Os核yrast带结构SU(3)→U(5)→SU(3)形状相变的有序性研究

童红 张春梅 石筑一 汪红 倪绍勇

引用本文:
Citation:

182Os核yrast带结构SU(3)→U(5)→SU(3)形状相变的有序性研究

童红, 张春梅, 石筑一, 汪红, 倪绍勇

Nuclear shape phase transition SU(3)→U(5)→SU(3) of the yrast-band structure in 182Os from nucleonic order

Tong Hong, Zhang Chun-Mei, Shi Zhu-Yi, Wang Hong, Ni Shao-Yong
PDF
导出引用
  • 对于发生在同一个原子核中的转动诱导发生基准态结构的量子相变,可以理解为一种从高有序激发模式向着低有序激发模式的演化:被布居到高角动量态的高有序激发核,以E2跃迁的方式先行退耦到yrast带,再退耦到共存区(或临界点)时释放了有序的结构能,诱发价核子对耦合强度改变,重新组合出低有序的激发模式基准态,实现了基准态结构的过渡.对核量子相变的这种描述,与朗道经典热相变理论之间有了某些相似的术语和物理内涵.本文把这种理解推广到了相继的二次相变中.以182Os 核为例作了说明,并展
    That quantum phase transition (QPT) that occurs at the same nucleus causing the change of the basic state by rotation can be understood as an evolution from a higher-ordered and high-excitation model to another lower-ordered and high-excitation one, which implies a nucleus populated at high-momentum state decoupling firstly to the yrast-band with some E2-trasitions mode, then to the coexist region (or critical point), wherein the structure-energy is released. The change of the nucleon coupling intensity is caused, finally the basic state of the lower-ordered excitation model is reconstructed, the evolution of basic states structure is accomplished. This description of nuclear QPTs has endowed them with some similar to Landau’s classical quantum thermal phase transition in terminology and physical significance. This standpoint is generalized into the phase transitions that occur at the same nucleus one after an other. As an example, for the 182Os nucleus, the problem is discussed carefully, and the enhanced sensitivity of nuclear binging energy to collective structure is demonstrated.
    • 基金项目: 贵州省科技厅自然科学项目(批准号:黔科合J字: [2009]2071号)资助课题.
    [1]

    [1]Iachello F 2000 Phys. Rev. Lett. 85 3580

    [2]

    [2]Iachello F 2001 Phys. Rev. Lett. 87 05250

    [3]

    [3]Jolie J, Casten R F, Brentano P von, Werner V 2001 Phys. Rev. Lett. 87 162501

    [4]

    [4]Casten R. F 2006 Nature Physics 2 811

    [5]

    [5]Jolie J, Casten R F 2005 Nuclear Physics News 15 20

    [6]

    [6]Niksic T, Vretenar D, Lalazissis G A, Ring P 2007 Phys. Rev. Lett. 99 092502

    [7]

    [7]Leviatan A 2007 Phys. Rev. Lett. 98 242502

    [8]

    [8]Regan P H, Beausang C W, Zarmfir N V 2003 Phys. Rev. Lett. 90 152502

    [9]

    [9]Meng J, Zhang W, Zhou S G, Toki H, Geng L S 2003 arXiv nucl-th/0312055v1

    [10]

    ]Zhang Y, Hou Z F, Liu Y X 2007 Phys. Rev. C 76 011305

    [11]

    ]Liu Y X, Mu L Z, Wei H Q 2006 Phys. Lett. B 633 49

    [12]

    ]Liu M L 2007 Phys. Rev. C 76 054304

    [13]

    ]Shen S F, Chen Y B, Xu F R, Zheng S J, Tang B, Wen T D 2007 Phys. Rev. C 75 047304

    [14]

    ]Leviatan A, Iachello F 2008 arXiv nucl-th/0812.4034v1

    [15]

    ]Yang S, Philip M. Walker, Xu F R, Liu U X 2008 Phys. Lett. B 659 165

    [16]

    ]Shi Z Y, Tong H, Shi Z Ya, Zhang C M, Zhao X Z, Ni S Y 2007 Acat Phys. Sin. 56 1329 (in Chinese)[石筑一、童红、 石筑亚、 张春梅、 赵行知、 倪绍勇 2007 物理学报 56 1329]

    [17]

    ]Shi Z Y, Zhang C M, Tong H, Zhao X Z, Ni S Y 2008 Acta Phys. Sin. 57 1564 (in Chinese) [石筑一、 张春梅、 童红、 赵行知、 倪绍勇 2008 物理学报57 1564]

    [18]

    ]Wang H, Zhang H, Shi Z Y, Lei Y X, Tong H, 2008 Journal of Southwest University(Natural Science Edition)  30 48 (in Chinese) [汪红、 张欢、 石筑一、 雷玉玺, 童红 2008 西南大学学报(自然科学版) 30  48]

    [19]

    ]Shi Z Y, Tong H, Zhang H, Wang H, Lei Y X, Zhao X Z, NI S Y 2009 Acta Phys. Sin. 58  (in Chinese)[石筑一、 童红、 张欢、 汪红、 雷玉玺、 赵行知、 倪绍勇 2009 物理学报58][20]Yang Z S, Liu Y, Qi H 1984 Nucl. Phys. A 421 297

    [20]

    ]Yang Z S, Liu Y, Tian X Q 1982 High Energy Phys.  & Nucl Phys. 6 472 (in Chinese) [杨泽森、 刘庸、 田晓岑 1982 高能物理与核物理  6  472][22]Liu Y, Shi Z Y, Dan H J, Sang J P 1995 Chinese Journal of Nuclear Physics 17 194

    [21]

    ]Shi Z Y, Liu Y, Sang J P 2000 Chin. Phys. 9  9

    [22]

    ]Shi Z Y, Liu Y, Sang J P 2001 Chin. Phys. 10 282

    [23]

    ]Shi Z Y, Zhao X Z, Tong H 2003 Chin. Phys.  12 732

    [24]

    ]Shi Z Y, Ni S Y, Tong H, Zhao X Z 2004 Acta Phys. Sin. 53 734 (in Chinese) [石筑一、 倪绍勇、 童红、 赵行知 2004 物理学报 53 734][27]Chu S Y, Nordberg H, Firestone R B, Ekstrm L P 2005 Isotope Explorer 3.0 //ie.lbl.gov/toi.htm.

    [25]

    ]Pattison L K, Cullen D M, Smith J F, Fletcher A M, Walker P M, El-Masri H M, Podolyak Z, Wood R J, Scholey C, Wheldon C, Mukherjee G, Balabanski D, Djongolov M, Dalsgaard T, Thisgaard H, Sletten G, Kondev F, Jenkins D, Lane G J, Lee I Y, Macchiavelli A O, Frauendorf S, Almehed D 2003 Phys. Rev. Lett. 91 182501

    [26]

    ]Tandel U S, Tandel S K, Chowdhury P, Cline D, Wu CY, Carpenter M P, Janssens R V F, Khoo T L, Lauritsen T, Lister C J, Seweryniak D, Zhu S 2008 Phys. Rev. Lett. 101 182503

    [27]

    ]Goodman A L 1999 Phys. Rev. C 60 014311

    [28]

    ]Kaneko K, Hasegawa M, Mizusaki T 2002 Phys. Rev. C 66 051306(R)

    [29]

    ]Landau L D, Lifshitz E M 1980 Statistical Physics Part 1 (3rd Edition Oxford: Pergamon Press.) p.257—260, p.446—516

    [30]

    ]Wang Z C 2003 Thermodynamics and statistical physics (3rd ed. Beijing: Higher education press.) 132—140. (in Chinese)

    [31]

    ]Cakirli R B, Casten R F, Winkler R, Blaum K, Kowalska M. 2009 Phys. Rev. Lett. 102 082501

  • [1]

    [1]Iachello F 2000 Phys. Rev. Lett. 85 3580

    [2]

    [2]Iachello F 2001 Phys. Rev. Lett. 87 05250

    [3]

    [3]Jolie J, Casten R F, Brentano P von, Werner V 2001 Phys. Rev. Lett. 87 162501

    [4]

    [4]Casten R. F 2006 Nature Physics 2 811

    [5]

    [5]Jolie J, Casten R F 2005 Nuclear Physics News 15 20

    [6]

    [6]Niksic T, Vretenar D, Lalazissis G A, Ring P 2007 Phys. Rev. Lett. 99 092502

    [7]

    [7]Leviatan A 2007 Phys. Rev. Lett. 98 242502

    [8]

    [8]Regan P H, Beausang C W, Zarmfir N V 2003 Phys. Rev. Lett. 90 152502

    [9]

    [9]Meng J, Zhang W, Zhou S G, Toki H, Geng L S 2003 arXiv nucl-th/0312055v1

    [10]

    ]Zhang Y, Hou Z F, Liu Y X 2007 Phys. Rev. C 76 011305

    [11]

    ]Liu Y X, Mu L Z, Wei H Q 2006 Phys. Lett. B 633 49

    [12]

    ]Liu M L 2007 Phys. Rev. C 76 054304

    [13]

    ]Shen S F, Chen Y B, Xu F R, Zheng S J, Tang B, Wen T D 2007 Phys. Rev. C 75 047304

    [14]

    ]Leviatan A, Iachello F 2008 arXiv nucl-th/0812.4034v1

    [15]

    ]Yang S, Philip M. Walker, Xu F R, Liu U X 2008 Phys. Lett. B 659 165

    [16]

    ]Shi Z Y, Tong H, Shi Z Ya, Zhang C M, Zhao X Z, Ni S Y 2007 Acat Phys. Sin. 56 1329 (in Chinese)[石筑一、童红、 石筑亚、 张春梅、 赵行知、 倪绍勇 2007 物理学报 56 1329]

    [17]

    ]Shi Z Y, Zhang C M, Tong H, Zhao X Z, Ni S Y 2008 Acta Phys. Sin. 57 1564 (in Chinese) [石筑一、 张春梅、 童红、 赵行知、 倪绍勇 2008 物理学报57 1564]

    [18]

    ]Wang H, Zhang H, Shi Z Y, Lei Y X, Tong H, 2008 Journal of Southwest University(Natural Science Edition)  30 48 (in Chinese) [汪红、 张欢、 石筑一、 雷玉玺, 童红 2008 西南大学学报(自然科学版) 30  48]

    [19]

    ]Shi Z Y, Tong H, Zhang H, Wang H, Lei Y X, Zhao X Z, NI S Y 2009 Acta Phys. Sin. 58  (in Chinese)[石筑一、 童红、 张欢、 汪红、 雷玉玺、 赵行知、 倪绍勇 2009 物理学报58][20]Yang Z S, Liu Y, Qi H 1984 Nucl. Phys. A 421 297

    [20]

    ]Yang Z S, Liu Y, Tian X Q 1982 High Energy Phys.  & Nucl Phys. 6 472 (in Chinese) [杨泽森、 刘庸、 田晓岑 1982 高能物理与核物理  6  472][22]Liu Y, Shi Z Y, Dan H J, Sang J P 1995 Chinese Journal of Nuclear Physics 17 194

    [21]

    ]Shi Z Y, Liu Y, Sang J P 2000 Chin. Phys. 9  9

    [22]

    ]Shi Z Y, Liu Y, Sang J P 2001 Chin. Phys. 10 282

    [23]

    ]Shi Z Y, Zhao X Z, Tong H 2003 Chin. Phys.  12 732

    [24]

    ]Shi Z Y, Ni S Y, Tong H, Zhao X Z 2004 Acta Phys. Sin. 53 734 (in Chinese) [石筑一、 倪绍勇、 童红、 赵行知 2004 物理学报 53 734][27]Chu S Y, Nordberg H, Firestone R B, Ekstrm L P 2005 Isotope Explorer 3.0 //ie.lbl.gov/toi.htm.

    [25]

    ]Pattison L K, Cullen D M, Smith J F, Fletcher A M, Walker P M, El-Masri H M, Podolyak Z, Wood R J, Scholey C, Wheldon C, Mukherjee G, Balabanski D, Djongolov M, Dalsgaard T, Thisgaard H, Sletten G, Kondev F, Jenkins D, Lane G J, Lee I Y, Macchiavelli A O, Frauendorf S, Almehed D 2003 Phys. Rev. Lett. 91 182501

    [26]

    ]Tandel U S, Tandel S K, Chowdhury P, Cline D, Wu CY, Carpenter M P, Janssens R V F, Khoo T L, Lauritsen T, Lister C J, Seweryniak D, Zhu S 2008 Phys. Rev. Lett. 101 182503

    [27]

    ]Goodman A L 1999 Phys. Rev. C 60 014311

    [28]

    ]Kaneko K, Hasegawa M, Mizusaki T 2002 Phys. Rev. C 66 051306(R)

    [29]

    ]Landau L D, Lifshitz E M 1980 Statistical Physics Part 1 (3rd Edition Oxford: Pergamon Press.) p.257—260, p.446—516

    [30]

    ]Wang Z C 2003 Thermodynamics and statistical physics (3rd ed. Beijing: Higher education press.) 132—140. (in Chinese)

    [31]

    ]Cakirli R B, Casten R F, Winkler R, Blaum K, Kowalska M. 2009 Phys. Rev. Lett. 102 082501

  • [1] 许霄琰. 强关联电子体系的量子蒙特卡罗计算. 物理学报, 2022, 71(12): 127101. doi: 10.7498/aps.71.20220079
    [2] 陈西浩, 夏继宏, 李孟辉, 翟福强, 朱广宇. 自旋-1/2量子罗盘链的量子相与相变. 物理学报, 2022, 71(3): 030302. doi: 10.7498/aps.71.20211433
    [3] 保安. 各向异性ruby晶格中费米子体系的Mott相变. 物理学报, 2021, 70(23): 230305. doi: 10.7498/aps.70.20210963
    [4] 尤冰凌, 刘雪莹, 成书杰, 王晨, 高先龙. Jaynes-Cummings晶格模型和Rabi晶格模型的量子相变. 物理学报, 2021, 70(10): 100201. doi: 10.7498/aps.70.20202066
    [5] 陈西浩, 夏继宏, 李孟辉, 翟福强, 朱广宇. 自旋-1/2量子罗盘链的量子相与相变. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211433
    [6] 刘彪, 周晓凡, 陈刚, 贾锁堂. 交错跃迁Hofstadter梯子的量子流相. 物理学报, 2020, 69(8): 080501. doi: 10.7498/aps.69.20191964
    [7] 陈爱民, 刘东昌, 段佳, 王洪雷, 相春环, 苏耀恒. 含有Dzyaloshinskii-Moriya相互作用的自旋1键交替海森伯模型的量子相变和拓扑序标度. 物理学报, 2020, 69(9): 090302. doi: 10.7498/aps.69.20191773
    [8] 黄珊, 刘妮, 梁九卿. 光腔中两组分玻色-爱因斯坦凝聚体的受激辐射特性和量子相变. 物理学报, 2018, 67(18): 183701. doi: 10.7498/aps.67.20180971
    [9] 陈西浩, 王秀娟. 一维扩展量子罗盘模型的拓扑序和量子相变. 物理学报, 2018, 67(19): 190301. doi: 10.7498/aps.67.20180855
    [10] 宋加丽, 钟鸣, 童培庆. 横场中具有周期性各向异性的一维XY模型的量子相变. 物理学报, 2017, 66(18): 180302. doi: 10.7498/aps.66.180302
    [11] 俞立先, 梁奇锋, 汪丽蓉, 朱士群. 双模Dicke模型的一级量子相变. 物理学报, 2014, 63(13): 134204. doi: 10.7498/aps.63.134204
    [12] 刘妮. 激光驱动下腔与玻色-爱因斯坦凝聚中的量子相变. 物理学报, 2013, 62(1): 013402. doi: 10.7498/aps.62.013402
    [13] 童红, 杨亚碧, 石筑一, 汪红. 182Os 核yrast带相继SU(3)–U(5)–SU(3)结构相变势能曲面的一种可能理解. 物理学报, 2013, 62(13): 132101. doi: 10.7498/aps.62.132101
    [14] 单传家. 具有三体相互作用的自旋链系统中的几何相位与量子相变 . 物理学报, 2012, 61(22): 220302. doi: 10.7498/aps.61.220302
    [15] 赵建辉. 应用约化密度保真度确定自旋为1的一维量子 Blume-Capel模型的基态相图 . 物理学报, 2012, 61(22): 220501. doi: 10.7498/aps.61.220501
    [16] 赵建辉, 王海涛. 应用多尺度纠缠重整化算法研究量子自旋系统的量子相变和基态纠缠. 物理学报, 2012, 61(21): 210502. doi: 10.7498/aps.61.210502
    [17] 杨金虎, 王杭栋, 杜建华, 张瞩君, 方明虎. Co(S1-xSex)2系统中的铁磁量子相变. 物理学报, 2009, 58(2): 1195-1199. doi: 10.7498/aps.58.1195
    [18] 石筑一, 童红, 张欢, 汪红, 雷玉玺, 赵行知, 倪绍勇. 76Sr核yrast带结构演化的微观研究. 物理学报, 2009, 58(7): 4542-4547. doi: 10.7498/aps.58.4542
    [19] 杨金虎, 王杭栋, 杜建华, 张瞩君, 方明虎. NiS2-xSex在x=1.00附近的反铁磁量子相变. 物理学报, 2008, 57(4): 2409-2414. doi: 10.7498/aps.57.2409
    [20] 石筑一, 童 红, 石筑亚, 张春梅, 赵行知, 倪绍勇. 转动诱发原子核量子相变的一种可能途径. 物理学报, 2007, 56(3): 1329-1333. doi: 10.7498/aps.56.1329
计量
  • 文章访问数:  5912
  • PDF下载量:  599
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-03-09
  • 修回日期:  2009-08-06
  • 刊出日期:  2010-05-15

182Os核yrast带结构SU(3)→U(5)→SU(3)形状相变的有序性研究

  • 1. (1)北方民族大学基础部,银川 750021; (2)贵州民族学院物理系,贵阳 550025
    基金项目: 贵州省科技厅自然科学项目(批准号:黔科合J字: [2009]2071号)资助课题.

摘要: 对于发生在同一个原子核中的转动诱导发生基准态结构的量子相变,可以理解为一种从高有序激发模式向着低有序激发模式的演化:被布居到高角动量态的高有序激发核,以E2跃迁的方式先行退耦到yrast带,再退耦到共存区(或临界点)时释放了有序的结构能,诱发价核子对耦合强度改变,重新组合出低有序的激发模式基准态,实现了基准态结构的过渡.对核量子相变的这种描述,与朗道经典热相变理论之间有了某些相似的术语和物理内涵.本文把这种理解推广到了相继的二次相变中.以182Os 核为例作了说明,并展

English Abstract

参考文献 (31)

目录

    /

    返回文章
    返回