搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

完整系统Tzénoff方程的Mei对称性直接导致的另一种守恒量

郑世旺 解加芳 陈向炜 杜雪莲

引用本文:
Citation:

完整系统Tzénoff方程的Mei对称性直接导致的另一种守恒量

郑世旺, 解加芳, 陈向炜, 杜雪莲

Another kind of conserved quantity induced directly from Mei symmetry of Tzénoff equations for holonomic systems

Zheng Shi-Wang, Xie Jia-Fang, Chen Xiang-Wei, Du Xue-Lian
PDF
导出引用
  • 研究了完整力学系统Tzénoff方程Mei对称性直接导致的另一种守恒量,给出了这种守恒量的函数表达式和导致这种守恒量的确定方程.利用该方法比以往更易找到守恒量.最后举例说明了新结果的应用.
    Another kind of conserved quantity deduced from Mei symmetry of Tzénoff equations for holonomic systems is studied. The expression of this conserved quantity and the determining equation to induce this conserved quantity are presented. The results indicate that this new method is easier to find conserved quantities than methods reported previously. Finally, application of this new result is presented by a practical example.
    • 基金项目: 国家自然科学基金(批准号:10972127),北方工业大学科研基金资助的课题.
    [1]

    Noether A E 1918 Nachr. Akad. Wiss. Gttingen. Math. Phys. KI II 235

    [2]

    Liu D 1991 Sci. Chin 34 419

    [3]

    Li Z P 1993 Classical and Quantum Dynamics of Constrained Systems and Their Symmetrical Properties (Beijing:Beijing Polytechnic University Press) (in Chinese) [李子平1993 经典和量子约束系统及其对称性质(北京: 北京工业大学出版社)]

    [4]

    Chen X W,Li Y M 2003 Chin. Phys. 12 936

    [5]

    Mei F X 1999 Applications of Lie Groups and Lie Algebras to Constrained Mechanical Systems(Beijing: Science Press) p90 (in Chinese) [梅凤翔 1999 李群和李代数对约束力学系统的应用(北京:科学出版社)第90页]

    [6]

    Luo S K 2007 Chin. Phys. 16 3182

    [7]

    Lou Z M 2007 Acta Phys. Sin. 56 2475 (in Chinese) [楼智美 2007物理学报56 2475]

    [8]

    Chen X W,Liu C M,Li Y M 2006 Chin. Phys. 15 470

    [9]

    Luo S K, Jia L Q,Cai J L 2005 Commun. Theor. Phys. 43 193

    [10]

    Mei F X 2004 Symmetries and Conserved Quantities of Constrained Mechanical Systems (Beijing:Beijing Institute of Technology Press) (in Chinese) [梅凤翔 2004约束力学系统的对称性与守恒量(北京:北京理工大学出版社)]

    [11]

    Fu J L,Chen L Q,Xie F P 2004 Chin. Phys. 13 1611

    [12]

    Xia L L,Li Y C,Wang X J 2009 Acta Phys. Sin.58 28 (in Chinese) [夏丽莉、李元成、王显军 2009物理学报58 28]

    [13]

    Liu C,Liu S X,Mei F X,Guo Y X 2008 Acta Phys. Sin.57 6709 (in Chinese) [刘 畅、刘世兴、梅凤翔、郭永新 2008物理学报57 6709]

    [14]

    Zhang H B, Chen L Q,Gu S L 2004 Commun. Theor. Phys. 42 321

    [15]

    Zhang Y 2007 Acta Phys. Sin.56 3054 (in Chinese) [张 毅 2007物理学报56 3054]

    [16]

    Fang J H,Ding N,Wang P 2007 Chin. Phys. 16 887

    [17]

    Mei F X 2000 J. Beijing Inst. Technol. 9 120

    [18]

    Jia L Q,Luo S K,Zhang Y Y 2008 Acta Phys . Sin. 57 2006 (in Chinese) [贾利群、罗绍凯、张耀宇 2008 物理学报 57 2006]

    [19]

    Zhang Y,Mei F X 2003 Chin. Phys. 12 936

    [20]

    Fang J H 2009 Acta Phys. Sin. 58 3617 (in Chinese) [方建会 2009 物理学报 58 3617]

    [21]

    Mei F X 2001 Chin. Phys. 10 177

    [22]

    Zheng S W, Jia L Q,Yu H S 2006 Chin. Phys. 15 1399

    [23]

    Ge W K 2008 Acta Phys. Sin. 57 6714 (in Chinese) [葛伟宽 2008 物理学报 57 6714]

    [24]

    Yang X F, Jia L Q 2010 Chin. Phys.B. 19 30305

    [25]

    Xu X J, Qin M C, Mei F X 2005 Chin. Phys. 14 1287

    [26]

    Li Y C, Xia L L,Wang X M 2009 Acta Phys. Sin. 58 6732 (in Chinese) [李元成、夏丽莉、王小明2009 物理学报 58 6732]

    [27]

    Mei F X,Wu H B 2009 Acta Phys . Sin. 58 5916 (in Chinese) [梅凤翔、吴惠彬2009 物理学报 58 5916]

    [28]

    Wu H B,Mei F X 2010 Chin. Phys.B 19 3

    [29]

    Zhang Y 2009 Acta Phys. Sin. 58 7447 (in Chinese) [张 毅 2009 物理学报 58 7447] 〖30] Zheng S W,Jia L Q 2007 Acta Phys. Sin. 56 661 (in Chinese)[郑世旺、贾利群 2007 物理学报56 661]

    [30]

    Zheng S W,Xie J F,Jia L Q 2006 Chin. Phys. Lett. 23 2924

    [31]

    Zheng S W,Xie J F,Jia L Q 2007 Commun. Theor. Phys. 48 43

    [32]

    Zheng S W,Xie J F,Zhang Q H 2007 Chin. Phys. Lett. 24 2164

    [33]

    Zheng S W,Xie J F,Chen W C 2008 Chin. Phys. Lett. 25 809

  • [1]

    Noether A E 1918 Nachr. Akad. Wiss. Gttingen. Math. Phys. KI II 235

    [2]

    Liu D 1991 Sci. Chin 34 419

    [3]

    Li Z P 1993 Classical and Quantum Dynamics of Constrained Systems and Their Symmetrical Properties (Beijing:Beijing Polytechnic University Press) (in Chinese) [李子平1993 经典和量子约束系统及其对称性质(北京: 北京工业大学出版社)]

    [4]

    Chen X W,Li Y M 2003 Chin. Phys. 12 936

    [5]

    Mei F X 1999 Applications of Lie Groups and Lie Algebras to Constrained Mechanical Systems(Beijing: Science Press) p90 (in Chinese) [梅凤翔 1999 李群和李代数对约束力学系统的应用(北京:科学出版社)第90页]

    [6]

    Luo S K 2007 Chin. Phys. 16 3182

    [7]

    Lou Z M 2007 Acta Phys. Sin. 56 2475 (in Chinese) [楼智美 2007物理学报56 2475]

    [8]

    Chen X W,Liu C M,Li Y M 2006 Chin. Phys. 15 470

    [9]

    Luo S K, Jia L Q,Cai J L 2005 Commun. Theor. Phys. 43 193

    [10]

    Mei F X 2004 Symmetries and Conserved Quantities of Constrained Mechanical Systems (Beijing:Beijing Institute of Technology Press) (in Chinese) [梅凤翔 2004约束力学系统的对称性与守恒量(北京:北京理工大学出版社)]

    [11]

    Fu J L,Chen L Q,Xie F P 2004 Chin. Phys. 13 1611

    [12]

    Xia L L,Li Y C,Wang X J 2009 Acta Phys. Sin.58 28 (in Chinese) [夏丽莉、李元成、王显军 2009物理学报58 28]

    [13]

    Liu C,Liu S X,Mei F X,Guo Y X 2008 Acta Phys. Sin.57 6709 (in Chinese) [刘 畅、刘世兴、梅凤翔、郭永新 2008物理学报57 6709]

    [14]

    Zhang H B, Chen L Q,Gu S L 2004 Commun. Theor. Phys. 42 321

    [15]

    Zhang Y 2007 Acta Phys. Sin.56 3054 (in Chinese) [张 毅 2007物理学报56 3054]

    [16]

    Fang J H,Ding N,Wang P 2007 Chin. Phys. 16 887

    [17]

    Mei F X 2000 J. Beijing Inst. Technol. 9 120

    [18]

    Jia L Q,Luo S K,Zhang Y Y 2008 Acta Phys . Sin. 57 2006 (in Chinese) [贾利群、罗绍凯、张耀宇 2008 物理学报 57 2006]

    [19]

    Zhang Y,Mei F X 2003 Chin. Phys. 12 936

    [20]

    Fang J H 2009 Acta Phys. Sin. 58 3617 (in Chinese) [方建会 2009 物理学报 58 3617]

    [21]

    Mei F X 2001 Chin. Phys. 10 177

    [22]

    Zheng S W, Jia L Q,Yu H S 2006 Chin. Phys. 15 1399

    [23]

    Ge W K 2008 Acta Phys. Sin. 57 6714 (in Chinese) [葛伟宽 2008 物理学报 57 6714]

    [24]

    Yang X F, Jia L Q 2010 Chin. Phys.B. 19 30305

    [25]

    Xu X J, Qin M C, Mei F X 2005 Chin. Phys. 14 1287

    [26]

    Li Y C, Xia L L,Wang X M 2009 Acta Phys. Sin. 58 6732 (in Chinese) [李元成、夏丽莉、王小明2009 物理学报 58 6732]

    [27]

    Mei F X,Wu H B 2009 Acta Phys . Sin. 58 5916 (in Chinese) [梅凤翔、吴惠彬2009 物理学报 58 5916]

    [28]

    Wu H B,Mei F X 2010 Chin. Phys.B 19 3

    [29]

    Zhang Y 2009 Acta Phys. Sin. 58 7447 (in Chinese) [张 毅 2009 物理学报 58 7447] 〖30] Zheng S W,Jia L Q 2007 Acta Phys. Sin. 56 661 (in Chinese)[郑世旺、贾利群 2007 物理学报56 661]

    [30]

    Zheng S W,Xie J F,Jia L Q 2006 Chin. Phys. Lett. 23 2924

    [31]

    Zheng S W,Xie J F,Jia L Q 2007 Commun. Theor. Phys. 48 43

    [32]

    Zheng S W,Xie J F,Zhang Q H 2007 Chin. Phys. Lett. 24 2164

    [33]

    Zheng S W,Xie J F,Chen W C 2008 Chin. Phys. Lett. 25 809

  • [1] 黄卫立. 一般完整系统Mei对称性的逆问题. 物理学报, 2015, 64(17): 170202. doi: 10.7498/aps.64.170202
    [2] 韩月林, 孙现亭, 张耀宇, 贾利群. 完整系统Appell方程Mei对称性的共形不变性与守恒量. 物理学报, 2013, 62(16): 160201. doi: 10.7498/aps.62.160201
    [3] 孙现亭, 韩月林, 王肖肖, 张美玲, 贾利群. 完整系统Appell方程Mei对称性的一种新的守恒量. 物理学报, 2012, 61(20): 200204. doi: 10.7498/aps.61.200204
    [4] 贾利群, 解银丽, 罗绍凯. 相对运动动力学系统Appell方程Mei对称性导致的Mei守恒量. 物理学报, 2011, 60(4): 040201. doi: 10.7498/aps.60.040201
    [5] 刘晓巍, 李元成. 机电系统Mei对称性导致的另一种守恒量. 物理学报, 2011, 60(11): 111102. doi: 10.7498/aps.60.111102
    [6] 李元成, 夏丽莉, 王小明, 刘晓巍. 完整系统Appell方程的Lie-Mei对称性与守恒量. 物理学报, 2010, 59(6): 3639-3642. doi: 10.7498/aps.59.3639
    [7] 贾利群, 张耀宇, 杨新芳, 崔金超, 解银丽. Lagrange系统Mei对称性的Ⅲ型结构方程和Ⅲ型Mei守恒量. 物理学报, 2010, 59(5): 2939-2941. doi: 10.7498/aps.59.2939
    [8] 刘仰魁. 一般完整力学系统Mei对称性的一种守恒量. 物理学报, 2010, 59(1): 7-10. doi: 10.7498/aps.59.7
    [9] 方建会. Lagrange系统Mei对称性直接导致的一种守恒量. 物理学报, 2009, 58(6): 3617-3619. doi: 10.7498/aps.58.3617
    [10] 蔡建乐. 一般完整系统Mei对称性的共形不变性与守恒量. 物理学报, 2009, 58(1): 22-27. doi: 10.7498/aps.58.22
    [11] 贾利群, 罗绍凯, 张耀宇. 非完整系统Nielsen方程的Mei对称性与Mei守恒量. 物理学报, 2008, 57(4): 2006-2010. doi: 10.7498/aps.57.2006
    [12] 葛伟宽. 一类完整系统的Mei对称性与守恒量. 物理学报, 2008, 57(11): 6714-6717. doi: 10.7498/aps.57.6714
    [13] 郑世旺, 贾利群. 非完整系统Tzénoff方程的Mei对称性和守恒量. 物理学报, 2007, 56(2): 661-665. doi: 10.7498/aps.56.661
    [14] 方建会, 彭 勇, 廖永潘. 关于Lagrange系统和Hamilton系统的Mei对称性. 物理学报, 2005, 54(2): 496-499. doi: 10.7498/aps.54.496
    [15] 方建会, 廖永潘, 彭 勇. 相空间中力学系统的两类Mei对称性及守恒量. 物理学报, 2005, 54(2): 500-503. doi: 10.7498/aps.54.500
    [16] 张 毅. 广义经典力学系统的对称性与Mei守恒量. 物理学报, 2005, 54(7): 2980-2984. doi: 10.7498/aps.54.2980
    [17] 顾书龙, 张宏彬. Vacco动力学方程的Mei对称性、Lie对称性和Noether对称性. 物理学报, 2005, 54(9): 3983-3986. doi: 10.7498/aps.54.3983
    [18] 张 毅, 范存新, 葛伟宽. Birkhoff系统的一类新型守恒量. 物理学报, 2004, 53(11): 3644-3647. doi: 10.7498/aps.53.3644
    [19] 李 红, 方建会. 变质量单面完整约束系统的Mei对称性. 物理学报, 2004, 53(9): 2807-2810. doi: 10.7498/aps.53.2807
    [20] 罗绍凯. Hamilton系统的Mei对称性、Noether对称性和Lie对称性. 物理学报, 2003, 52(12): 2941-2944. doi: 10.7498/aps.52.2941
计量
  • 文章访问数:  5930
  • PDF下载量:  1012
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-07-19
  • 修回日期:  2009-10-24
  • 刊出日期:  2010-04-05

完整系统Tzénoff方程的Mei对称性直接导致的另一种守恒量

  • 1. (1)北方工业大学理学院,北京 100144; (2)商丘师范学院物理与信息工程系,商丘 476000
    基金项目: 国家自然科学基金(批准号:10972127),北方工业大学科研基金资助的课题.

摘要: 研究了完整力学系统Tzénoff方程Mei对称性直接导致的另一种守恒量,给出了这种守恒量的函数表达式和导致这种守恒量的确定方程.利用该方法比以往更易找到守恒量.最后举例说明了新结果的应用.

English Abstract

参考文献 (33)

目录

    /

    返回文章
    返回