搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

(La0.7Sr0.3MnO3 )m(BiFeO3)n 超晶格结构的导电机理

朱晖文 姜平 王顺利 毛凌峰 唐为华

引用本文:
Citation:

(La0.7Sr0.3MnO3 )m(BiFeO3)n 超晶格结构的导电机理

朱晖文, 姜平, 王顺利, 毛凌峰, 唐为华

Conduction mechanisms in (La0.7Sr0.3MnO3)m(BiFeO3)n superlattice

Jiang Ping, Wang Shun-Li, Tang Wei-Hua, Zhu Hui-Wen, Mao Ling-Feng
PDF
导出引用
  • 利用射频磁控溅射的方法在SrTiO3(001) 基片上制备了(La0.7Sr0.3MnO3)m(BiFeO3)n超晶格结构.对所制备的超晶格结构进行了50—150℃温度范围内的电流-电压测试分析.结果表明,随着BiFeO3薄膜的厚度减小,温度的升高,(La0.7Sr0.3MnO3)m(BiFeO3)n超晶格结构的电流变大.进一步根据介质导电模型对(La0.7Sr0.3MnO3)m(BiFeO3)n超晶格结构的导电特性做了分析.在温度较低或者电场较弱时,所制备的(La0.7Sr0.3MnO3)m(BiFeO3)n超晶格结构表现为欧姆导电,而在高温,高电场的情况下,其导电行为由空间电荷限制电流机理主导.
    (La0.7Sr0.3MnO3)m(BiFeO3)n superlattices were grown in situ on SrTiO3(001) substrates by rf magnetron sputtering. The current-voltage measurements were performed under the temperature of 50—150℃ for the superlattices specimens. The analysis showed that the leakage current increased with increasing the temperature or decreasing the BFO thickness in the samples. And the conduction mechanisms of the prepared (La0.7Sr0.3MnO3)m(BiFeO3)n superlattices were analyzed according to common insulator conduction models. It exhibited that the space-charge-limited current were dominated in the as fabricated (La0.7Sr0.3MnO3)m(BiFeO3)n superlattices in high temperature or high electrical field.
    • 基金项目: 国家自然科学基金(批准号:50672088)和浙江省自然科学基金杰出青年研究团队(批准号:R4090058)资助的课题.
    [1]

    Ramesh R, Spaldin N A, 2007 Nat Mater, 6 21

    [2]

    Fiebig M, Lottermoser Th, Frohlich D, Goltsev A V, Pisarev R V 2002 Nature, 419 818

    [3]

    Wang K F, Liu J M, Ren Z F, Multiferroicity, The coupling between magnetic and polarization. arXiv:0908.0662v1, 2009.

    [4]

    Filippetti A, Hill N A 2001 Journal of Magnetism and Magnetic Materials 236 176

    [5]

    Singh S K, Ishiwara H, Maruyama K 2006 Applied Physics Letters 88 262908

    [6]

    Tokura Y, Tomioka Y 1999 Journal of Magnetism and Magnetic Materials 200 1

    [7]

    Prellier W, Lecoeur P, Mercey B 2001 Condensed Matter 13 R915

    [8]

    Wang J W, Zhang Y, Jiang P, Tang W H 2009 Acta Phys. Sin. 58 4199 (in Chinese)[王君伟、张 勇、姜 平、唐为华 2009 物理学报 58 4199]

    [9]

    Bea H, Bibes M, Sirena M, Herranz G, Bouzehouane K, Jacquet E, Fusil S, Paruch P, Dawber M, Contour J P, Barthelemy A 2006 Appl. Phys. Lett. 88 062502

    [10]

    Bea H, Bibes M, Cherifi S, Nolting F, Warot-Fonrose B, Fusil S, Herranz G, Deranlot C, Jacquet E, Bouzehouane K, Barthelemy A 2006 Appl. Phys. Lett. 89 242114

    [11]

    Sheng J, Cai T Y, Guo G Y, Li Z Y 2008 Journal of Applied Physics 104 053904

    [12]

    Qi X, Dho J, Tomov R, Blamire M G, MacManus-Driscoll, J L 2005 Appl. Phys. Lett. 86 062903

    [13]

    Pabst G W, Martin L W, Chu Y H, Ramesh R 2007 Appl. Phys. Lett. 90 072902

    [14]

    Wang C, Takahashi M, Fujino H, Zhao X, Kume E, Horiuchi T, Sakai S 2006 Journal of Applied Physics 99 054104

    [15]

    Clark S J, Robertson J 2007 Appl. Phys. Lett. 90 132903

    [16]

    Ranjith R, Prellier W, Cheah J W, Wang J, Wu T 2008 Appl. Phys. Lett. 92 232905

    [17]

    Kudo T, Tachiki M, Kashiwai T, Kobayashi T 1998 Japanese Journal of Applied Physics. 37 L999

    [18]

    Barik U K, Srinivasan S, Nagendra C L, Subrahmanyam A 2003 Thin Solid Films 429 129

    [19]

    Simmons J G 1965 Physical Review Letters 15 967

    [20]

    Dawber M, Rabe K M, Scott J F 2005 Reviews of Modern Physics 77 1083

    [21]

    Scott J F 2006 Journal of Physics: Condensed Matter 18 R361

    [22]

    Nagaraj B, Aggarwal S, Song T K, Sawhney T, Ramesh R 1999 Physical Review B 59 16022

    [23]

    Zubko P, Jung D J, Scott J F 2006 Journal of Applied Physics 100 114113

    [24]

    Chaudhuri A R, Krupanidhi S B 2005 Journal of Applied Physics 98 094112

    [25]

    Bose S, Krupanidhi S B 2007 Applied Physics Letters 90 212902

  • [1]

    Ramesh R, Spaldin N A, 2007 Nat Mater, 6 21

    [2]

    Fiebig M, Lottermoser Th, Frohlich D, Goltsev A V, Pisarev R V 2002 Nature, 419 818

    [3]

    Wang K F, Liu J M, Ren Z F, Multiferroicity, The coupling between magnetic and polarization. arXiv:0908.0662v1, 2009.

    [4]

    Filippetti A, Hill N A 2001 Journal of Magnetism and Magnetic Materials 236 176

    [5]

    Singh S K, Ishiwara H, Maruyama K 2006 Applied Physics Letters 88 262908

    [6]

    Tokura Y, Tomioka Y 1999 Journal of Magnetism and Magnetic Materials 200 1

    [7]

    Prellier W, Lecoeur P, Mercey B 2001 Condensed Matter 13 R915

    [8]

    Wang J W, Zhang Y, Jiang P, Tang W H 2009 Acta Phys. Sin. 58 4199 (in Chinese)[王君伟、张 勇、姜 平、唐为华 2009 物理学报 58 4199]

    [9]

    Bea H, Bibes M, Sirena M, Herranz G, Bouzehouane K, Jacquet E, Fusil S, Paruch P, Dawber M, Contour J P, Barthelemy A 2006 Appl. Phys. Lett. 88 062502

    [10]

    Bea H, Bibes M, Cherifi S, Nolting F, Warot-Fonrose B, Fusil S, Herranz G, Deranlot C, Jacquet E, Bouzehouane K, Barthelemy A 2006 Appl. Phys. Lett. 89 242114

    [11]

    Sheng J, Cai T Y, Guo G Y, Li Z Y 2008 Journal of Applied Physics 104 053904

    [12]

    Qi X, Dho J, Tomov R, Blamire M G, MacManus-Driscoll, J L 2005 Appl. Phys. Lett. 86 062903

    [13]

    Pabst G W, Martin L W, Chu Y H, Ramesh R 2007 Appl. Phys. Lett. 90 072902

    [14]

    Wang C, Takahashi M, Fujino H, Zhao X, Kume E, Horiuchi T, Sakai S 2006 Journal of Applied Physics 99 054104

    [15]

    Clark S J, Robertson J 2007 Appl. Phys. Lett. 90 132903

    [16]

    Ranjith R, Prellier W, Cheah J W, Wang J, Wu T 2008 Appl. Phys. Lett. 92 232905

    [17]

    Kudo T, Tachiki M, Kashiwai T, Kobayashi T 1998 Japanese Journal of Applied Physics. 37 L999

    [18]

    Barik U K, Srinivasan S, Nagendra C L, Subrahmanyam A 2003 Thin Solid Films 429 129

    [19]

    Simmons J G 1965 Physical Review Letters 15 967

    [20]

    Dawber M, Rabe K M, Scott J F 2005 Reviews of Modern Physics 77 1083

    [21]

    Scott J F 2006 Journal of Physics: Condensed Matter 18 R361

    [22]

    Nagaraj B, Aggarwal S, Song T K, Sawhney T, Ramesh R 1999 Physical Review B 59 16022

    [23]

    Zubko P, Jung D J, Scott J F 2006 Journal of Applied Physics 100 114113

    [24]

    Chaudhuri A R, Krupanidhi S B 2005 Journal of Applied Physics 98 094112

    [25]

    Bose S, Krupanidhi S B 2007 Applied Physics Letters 90 212902

  • [1] 王哲, 许劼敏, 王文君, 李何轩, 邹优鸣, 于璐, 屈哲. 多铁材料MnSb2O6中自旋涨落的ESR研究. 物理学报, 2022, 71(1): 017501. doi: 10.7498/aps.71.20211465
    [2] 赵润, 杨浩. 多铁性钙钛矿薄膜的氧空位调控研究进展. 物理学报, 2018, 67(15): 156101. doi: 10.7498/aps.67.20181028
    [3] 袁国亮, 李爽, 任申强, 刘俊明. 激发态电荷转移有机体的多铁性研究. 物理学报, 2018, 67(15): 157509. doi: 10.7498/aps.67.20180759
    [4] 王建元, 白健英, 罗炳成, 王拴虎, 金克新, 陈长乐. BaTiO3/La0.67Sr0.33MnO3-复合薄膜的磁致电极化和磁介电特性研究. 物理学报, 2018, 67(1): 017701. doi: 10.7498/aps.67.20172019
    [5] 翟晓芳, 云宇, 孟德超, 崔璋璋, 黄浩亮, 王建林, 陆亚林. 铋层状氧化物单晶薄膜多铁性研究进展. 物理学报, 2018, 67(15): 157702. doi: 10.7498/aps.67.20181159
    [6] 贾晓静, 苏海莹, 刘华艳, 许彦彬, 康振峰, 丁铁柱. 周期数N不同的(Ce0.8SmO2-)/YSZ)N超晶格薄膜的阻抗性质. 物理学报, 2017, 66(1): 016801. doi: 10.7498/aps.66.016801
    [7] 陈延彬, 张帆, 张伦勇, 周健, 张善涛, 陈延峰. 探索基于人工超晶格LaFeO3-YMnO3和自然超晶格n-LaFeO3-Bi4Ti3O12薄膜多铁性. 物理学报, 2015, 64(9): 097502. doi: 10.7498/aps.64.097502
    [8] 左应红, 王建国, 朱金辉, 范如玉. 基于库仑定律的二极管空间电荷限制效应研究. 物理学报, 2012, 61(16): 165204. doi: 10.7498/aps.61.165204
    [9] 骆杨, 段羽, 陈平, 臧春亮, 谢月, 赵毅, 刘式墉. 利用空间电荷限制电流方法确定三(8-羟基喹啉)铝的电子迁移率特性初步研究. 物理学报, 2012, 61(14): 147801. doi: 10.7498/aps.61.147801
    [10] 於黄忠. 空间电荷限制电流法测量共混体系中空穴的迁移率. 物理学报, 2012, 61(8): 087204. doi: 10.7498/aps.61.087204
    [11] 李飞, 肖刘, 刘濮鲲, 易红霞, 万晓声. 同心球之间空间电荷限制电流的简单理论. 物理学报, 2011, 60(9): 097901. doi: 10.7498/aps.60.097901
    [12] 郭冬云, 李超, 王传彬, 沈强, 张联盟, Tu Rong, Goto Takashi. Sol-gel法制备Bi0.85Nd0.15FeO3多铁性薄膜. 物理学报, 2010, 59(8): 5772-5776. doi: 10.7498/aps.59.5772
    [13] 肖春, 张冶文, 林家齐, 郑飞虎, 安振连, 雷清泉. 聚乙烯薄膜中空间电荷短路放电复合率的发光法研究. 物理学报, 2009, 58(9): 6459-6464. doi: 10.7498/aps.58.6459
    [14] 王君伟, 张勇, 姜平, 唐为华. (La0.7Sr0.3MnO3)m(BiFeO3)n超晶格间隔的La0.7Sr0.3MnO3三明治结构制备及表征. 物理学报, 2009, 58(6): 4199-4204. doi: 10.7498/aps.58.4199
    [15] 仲崇贵, 蒋青, 方靖淮, 葛存旺. 单相ABO3型多铁材料的磁电耦合及磁电性质研究. 物理学报, 2009, 58(5): 3491-3496. doi: 10.7498/aps.58.3491
    [16] 仲崇贵, 蒋青, 方靖淮, 江学范, 罗礼进. 1-3型纳米多铁复合薄膜中电场诱导的磁化研究. 物理学报, 2009, 58(10): 7227-7234. doi: 10.7498/aps.58.7227
    [17] 刘艳芬, 刘晶会, 贾 城. 侧向铁磁/铁磁超晶格的推迟模式. 物理学报, 2008, 57(3): 1897-1901. doi: 10.7498/aps.57.1897
    [18] 徐晓虎, 沈 剑. 铁电超晶格的一个唯象模型. 物理学报, 1999, 48(11): 2142-2145. doi: 10.7498/aps.48.2142
    [19] 钟健. Heisenberg反铁磁超晶格的自旋波. 物理学报, 1990, 39(3): 486-490. doi: 10.7498/aps.39.486
    [20] 史杭, 蔡建华. 铁磁超晶格中的电磁耦子. 物理学报, 1988, 37(5): 817-822. doi: 10.7498/aps.37.817
计量
  • 文章访问数:  5501
  • PDF下载量:  957
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-02-24
  • 修回日期:  2010-03-22
  • 刊出日期:  2010-04-05

(La0.7Sr0.3MnO3 )m(BiFeO3)n 超晶格结构的导电机理

  • 1. (1)苏州大学电子信息学院,苏州 215021; (2)浙江理工大学物理系,光电材料与器件中心,杭州 310018
    基金项目: 国家自然科学基金(批准号:50672088)和浙江省自然科学基金杰出青年研究团队(批准号:R4090058)资助的课题.

摘要: 利用射频磁控溅射的方法在SrTiO3(001) 基片上制备了(La0.7Sr0.3MnO3)m(BiFeO3)n超晶格结构.对所制备的超晶格结构进行了50—150℃温度范围内的电流-电压测试分析.结果表明,随着BiFeO3薄膜的厚度减小,温度的升高,(La0.7Sr0.3MnO3)m(BiFeO3)n超晶格结构的电流变大.进一步根据介质导电模型对(La0.7Sr0.3MnO3)m(BiFeO3)n超晶格结构的导电特性做了分析.在温度较低或者电场较弱时,所制备的(La0.7Sr0.3MnO3)m(BiFeO3)n超晶格结构表现为欧姆导电,而在高温,高电场的情况下,其导电行为由空间电荷限制电流机理主导.

English Abstract

参考文献 (25)

目录

    /

    返回文章
    返回