搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

保护气对切割弧特性影响的模拟研究

周前红 郭文康 李辉

引用本文:
Citation:

保护气对切割弧特性影响的模拟研究

周前红, 郭文康, 李辉

Numerical simulation on the effect of shielding gas on the plasma cutting arc

Li Hui, Zhou Qian-Hong, Guo Wen-Kang
PDF
导出引用
  • 通过比较两种不同结构切割炬所产生的等离子体流场,发现保护气对等离子体的温度和速度分布影响很小.垂直保护气在切割炬喷口形成阻碍作用,造成切割炬内的压强有所升高,但是增加不大.两种结构保护气对切割弧的影响只是在炬喷口外的激波附近.加入保护气后激波的强度会减弱.相对于没有保护气的情况,保护气增加冷却作用,弧电压会略有升高.当改变保护气的成分时,发现弧柱区的氧气含量不受影响,所以保护气成分的改变不会影响到弧电压.计算发现轴线处氧气和周围气体的混合很少,在喷口下游10mm处,氧气的摩尔分数仍在90%以上.
    By comparing two diffierent torch geometries, it was found that the shielding flow has no significant effect on plasma velocity and temperature,except in the shock wave region. The shielding flow decreases the shock wave, and increases the arc voltage due to cooling. In the impinging geometry, shielding flow will crash the plasma jet after the nozzle exit and slightly increase the pressure in the torch. It was also shown that the component of shielding gas has no significant effect on plasma cuttingarc. The mole fraction of oxygen decreases very slowly along the axis and is still more than 90% at 10 mm downstream the nozzle exit.
    [1]

    Gage R M 1957 U. S. Patent 2806124

    [2]

    Nemchinsky V A, Severance W S 2006 J. Phys. D: Appl. Phys. 39 423

    [3]

    Ramakrishnan S, Rogozinski M W 1997 J. Phys. D: Appl. Phys. 30 636

    [4]

    Ramakrishnan S, Gershenzon M, Polivka F, Kearny T N, Rogozinsky M W 1997 IEEE Trans. Plasma Sci. 25 937

    [5]

    Pardo C, Gonzalez-Aguilar J, Rodriguez-Yunta A, Calderon M A G 1999 J. Phys. D: Appl. Phys. 32 2181

    [6]

    Freton P, Gonzalez J J, Gleizes A, Peyret F C, Caillibotte G, Delzenne M 2002 J. Phys. D: Appl. Phys. 35 115

    [7]

    Freton P, Gonzalez J J, Peyret F C, Glezes A 2003 J. Phys. D: Appl. Phys. 36 1269

    [8]

    Girard L, Teulet Ph, Raza-nimanana M, Gleizes A, Camy-Peyret F, Ballot E, Richard F 2006 J. Phys. D: Appl. Phys. 39 1543

    [9]

    Peters J, Yin F, Borges C F M, Heberlein J, Hackett C 2005 J. Phys. D: Appl. Phys. 38 1781

    [10]

    Peters J, Heberlein J, Lindsay J 2007 J. Phys. D: Appl. Phys. 40 3960

    [11]

    Nemchinsky V A, Showalter M S 2003 J. Phys. D: Appl. Phys. 36 704

    [12]

    Peters J, Bartlett B, Lindsay J, Heberlein J 2008 Plasma Chem. Plasma Process 28 331

    [13]

    Bini R, Colosimo B M, Kutlu A E, Monno M 2008 J. Mater. Process Tech. 196 345

    [14]

    Gonzalez-Aguilar J, Pardo C, Rodriguez-Yunita A, Calderon M A G 1999 IEEE Trans. Plasma Sci. 27 264

    [15]

    Patankar S V 1980 Numerical Heat Transfer and Fluid Flow. (New York: McGraw-Hill)

    [16]

    Ghorui S, Heberlein J V R, Pfender E 2007 J. Phys. D: Appl. Phys. 40 1966

    [17]

    Colombo V, Concetti A, Ghedini E, Dallavalle S, Vancini M 2008 IEEE Trans. Plasma Sci. 36 389

    [18]

    Zhou Q H, Li H, Xu X, Liu F, Guo S F, Chang X J, Guo W K, Xu P 2009 J. Phys. D: Appl. Phys. 42 015210

    [19]

    Zhou Q H, Li H, Xu X, Liu F, Guo S F, Chang X J, Guo W K, Xu P 2008 Plasma Chem. Plasma Process 6 729

    [20]

    Zhou Q H, Yin H T, Li H, Xu X, Liu F, Guo S F, Chang X J, Guo W K, Xu P 2009 J. Phys. D: Appl. Phys. 42 095208

    [21]

    Guo S F, Zhou Q H, Guo W K, Xu P 2010 Plasma Chem. Plasma Process 30 121

    [22]

    Naghizadeh-Kashani Y, Cressault Y, Gleizes A 2002 J. Phys. D: Appl. Phys. 35 2925

    [23]

    Murphy A B 1995 Plasma Chem. Plasma Process 15 279

    [24]

    Murphy A B 1994 Plasma Chem. Plasma Process 14 451

    [25]

    Fluent Inc. 2001 FLUENT Users Guide

    [26]

    Yakhot V, Orszag S A 1986 Journal of Scientic Computing 1 1

    [27]

    Jayatilleke C 1969 Prog. Heat Mass Transfer 1 193

    [28]

    Shih T H, Liou W W, Shabbir A, Yang Z, Zhu J 1995 Computers Fluids 24 227

    [29]

    Reynolds W C 1987 Lecture Notes for von Karman Institute Agard Report No. 755

    [30]

    Launder B E 1989 Inter. J. Heat Fluid Flow 10 282

    [31]

    Launder B E, Reece G J, Rodi W 1975 J. Fluid Mech. 68 537

    [32]

    Lien F S, Leschziner M A 1994 Computers and Fluids 23 983

    [33]

    Yuan X Q, Li H, Zhao T Z, Wang F, Guo W K, Xu P 2004 Acta Phys. Sin. 53 788 (in Chinese) [袁行球、李 辉、 赵太泽、 王 飞、 郭文康、 须 平2004 物理学报53 788]

    [34]

    Yuan X Q, Li H, Zhao T Z, Wang F, Yu G Y, Guo W K, Xu P 2004 Acta Phys. Sin. 53 3806(in Chinese) 〖袁行球、李 辉、 赵太泽、 王 飞、 俞国扬、 郭文康、 须 平2004 物理学报53 3806]

  • [1]

    Gage R M 1957 U. S. Patent 2806124

    [2]

    Nemchinsky V A, Severance W S 2006 J. Phys. D: Appl. Phys. 39 423

    [3]

    Ramakrishnan S, Rogozinski M W 1997 J. Phys. D: Appl. Phys. 30 636

    [4]

    Ramakrishnan S, Gershenzon M, Polivka F, Kearny T N, Rogozinsky M W 1997 IEEE Trans. Plasma Sci. 25 937

    [5]

    Pardo C, Gonzalez-Aguilar J, Rodriguez-Yunta A, Calderon M A G 1999 J. Phys. D: Appl. Phys. 32 2181

    [6]

    Freton P, Gonzalez J J, Gleizes A, Peyret F C, Caillibotte G, Delzenne M 2002 J. Phys. D: Appl. Phys. 35 115

    [7]

    Freton P, Gonzalez J J, Peyret F C, Glezes A 2003 J. Phys. D: Appl. Phys. 36 1269

    [8]

    Girard L, Teulet Ph, Raza-nimanana M, Gleizes A, Camy-Peyret F, Ballot E, Richard F 2006 J. Phys. D: Appl. Phys. 39 1543

    [9]

    Peters J, Yin F, Borges C F M, Heberlein J, Hackett C 2005 J. Phys. D: Appl. Phys. 38 1781

    [10]

    Peters J, Heberlein J, Lindsay J 2007 J. Phys. D: Appl. Phys. 40 3960

    [11]

    Nemchinsky V A, Showalter M S 2003 J. Phys. D: Appl. Phys. 36 704

    [12]

    Peters J, Bartlett B, Lindsay J, Heberlein J 2008 Plasma Chem. Plasma Process 28 331

    [13]

    Bini R, Colosimo B M, Kutlu A E, Monno M 2008 J. Mater. Process Tech. 196 345

    [14]

    Gonzalez-Aguilar J, Pardo C, Rodriguez-Yunita A, Calderon M A G 1999 IEEE Trans. Plasma Sci. 27 264

    [15]

    Patankar S V 1980 Numerical Heat Transfer and Fluid Flow. (New York: McGraw-Hill)

    [16]

    Ghorui S, Heberlein J V R, Pfender E 2007 J. Phys. D: Appl. Phys. 40 1966

    [17]

    Colombo V, Concetti A, Ghedini E, Dallavalle S, Vancini M 2008 IEEE Trans. Plasma Sci. 36 389

    [18]

    Zhou Q H, Li H, Xu X, Liu F, Guo S F, Chang X J, Guo W K, Xu P 2009 J. Phys. D: Appl. Phys. 42 015210

    [19]

    Zhou Q H, Li H, Xu X, Liu F, Guo S F, Chang X J, Guo W K, Xu P 2008 Plasma Chem. Plasma Process 6 729

    [20]

    Zhou Q H, Yin H T, Li H, Xu X, Liu F, Guo S F, Chang X J, Guo W K, Xu P 2009 J. Phys. D: Appl. Phys. 42 095208

    [21]

    Guo S F, Zhou Q H, Guo W K, Xu P 2010 Plasma Chem. Plasma Process 30 121

    [22]

    Naghizadeh-Kashani Y, Cressault Y, Gleizes A 2002 J. Phys. D: Appl. Phys. 35 2925

    [23]

    Murphy A B 1995 Plasma Chem. Plasma Process 15 279

    [24]

    Murphy A B 1994 Plasma Chem. Plasma Process 14 451

    [25]

    Fluent Inc. 2001 FLUENT Users Guide

    [26]

    Yakhot V, Orszag S A 1986 Journal of Scientic Computing 1 1

    [27]

    Jayatilleke C 1969 Prog. Heat Mass Transfer 1 193

    [28]

    Shih T H, Liou W W, Shabbir A, Yang Z, Zhu J 1995 Computers Fluids 24 227

    [29]

    Reynolds W C 1987 Lecture Notes for von Karman Institute Agard Report No. 755

    [30]

    Launder B E 1989 Inter. J. Heat Fluid Flow 10 282

    [31]

    Launder B E, Reece G J, Rodi W 1975 J. Fluid Mech. 68 537

    [32]

    Lien F S, Leschziner M A 1994 Computers and Fluids 23 983

    [33]

    Yuan X Q, Li H, Zhao T Z, Wang F, Guo W K, Xu P 2004 Acta Phys. Sin. 53 788 (in Chinese) [袁行球、李 辉、 赵太泽、 王 飞、 郭文康、 须 平2004 物理学报53 788]

    [34]

    Yuan X Q, Li H, Zhao T Z, Wang F, Yu G Y, Guo W K, Xu P 2004 Acta Phys. Sin. 53 3806(in Chinese) 〖袁行球、李 辉、 赵太泽、 王 飞、 俞国扬、 郭文康、 须 平2004 物理学报53 3806]

  • [1] 牛越, 包为民, 李小平, 刘彦明, 刘东林. 大功率热平衡感应耦合等离子体数值模拟及实验研究. 物理学报, 2021, 70(9): 095204. doi: 10.7498/aps.70.20201610
    [2] 陈国华, 石科军, 储进科, 吴昊, 周池楼, 肖舒. 环形磁场金属等离子体源冷却流场的数值模拟与优化. 物理学报, 2021, 70(7): 075203. doi: 10.7498/aps.70.20201368
    [3] 左娟莉, 杨泓, 魏炳乾, 侯精明, 张凯. 气力提升系统气液两相流数值模拟分析. 物理学报, 2020, 69(6): 064705. doi: 10.7498/aps.69.20191755
    [4] 喻明浩. 非平衡感应耦合等离子体流场与电磁场作用机理的数值模拟. 物理学报, 2019, 68(18): 185202. doi: 10.7498/aps.68.20190865
    [5] 姜春华, 赵正予. 化学复合率对激发赤道等离子体泡影响的数值模拟. 物理学报, 2019, 68(19): 199401. doi: 10.7498/aps.68.20190173
    [6] 郭恒, 张晓宁, 聂秋月, 李和平, 曾实, 李志辉. 亚大气压六相交流电弧放电等离子体射流特性数值模拟. 物理学报, 2018, 67(5): 055201. doi: 10.7498/aps.67.20172557
    [7] 危卫, 张力元, 顾兆林. 工业中粉体颗粒的荷电机理及数值模拟方法. 物理学报, 2015, 64(16): 168301. doi: 10.7498/aps.64.168301
    [8] 高启, 张传飞, 周林, 李正宏, 吴泽清, 雷雨, 章春来, 祖小涛. Z箍缩Al等离子体X特征辐射谱线数值模拟及考虑叠加效应后的修正. 物理学报, 2014, 63(12): 125202. doi: 10.7498/aps.63.125202
    [9] 欧阳建明, 邵福球, 邹德滨. 大气等离子体中负氧离子产生和演化过程数值模拟. 物理学报, 2011, 60(11): 110209. doi: 10.7498/aps.60.110209
    [10] 蔡利兵, 王建国. 介质表面高功率微波击穿中释气现象的数值模拟研究. 物理学报, 2011, 60(2): 025217. doi: 10.7498/aps.60.025217
    [11] 庞学霞, 邓泽超, 贾鹏英, 梁伟华. 大气等离子体中氮氧化物粒子行为的数值模拟. 物理学报, 2011, 60(12): 125201. doi: 10.7498/aps.60.125201
    [12] 庞学霞, 邓泽超, 董丽芳. 不同电离度下大气等离子体粒子行为的数值模拟. 物理学报, 2008, 57(8): 5081-5088. doi: 10.7498/aps.57.5081
    [13] 欧阳建明, 邵福球, 林明东. 含氧等离子体中臭氧形成过程数值模拟. 物理学报, 2008, 57(5): 3293-3297. doi: 10.7498/aps.57.3293
    [14] 欧阳建明, 邵福球, 王 龙, 房同珍, 刘建全. 一维大气等离子体化学过程数值模拟. 物理学报, 2006, 55(9): 4974-4979. doi: 10.7498/aps.55.4974
    [15] 郭文琼, 周晓军, 张雄军, 隋 展, 吴登生. 等离子体电极普克尔盒电光开关单脉冲过程数值模拟. 物理学报, 2006, 55(7): 3519-3523. doi: 10.7498/aps.55.3519
    [16] 段耀勇, 郭永辉, 王文生, 邱爱慈. 钨丝阵等离子体Z箍缩的数值模拟. 物理学报, 2004, 53(8): 2654-2660. doi: 10.7498/aps.53.2654
    [17] 袁行球, 李 辉, 赵太泽, 王 飞, 郭文康, 须 平. 超音速等离子体炬的数值模拟. 物理学报, 2004, 53(3): 788-792. doi: 10.7498/aps.53.788
    [18] 訾炳涛, 姚可夫, 许光明, 崔建忠. 脉冲磁场下金属熔体凝固流场的数值模拟. 物理学报, 2003, 52(1): 115-119. doi: 10.7498/aps.52.115
    [19] 袁行球, 陈重阳, 李 辉, 赵太泽, 郭文康, 须 平. 电子束离子阱中高价态离子演化过程的数值模拟. 物理学报, 2003, 52(8): 1906-1910. doi: 10.7498/aps.52.1906
    [20] 于艳梅, 杨根仓, 赵达文, 吕衣礼, A. KARMA, C. BECKERMANN. 过冷熔体中枝晶生长的相场法数值模拟. 物理学报, 2001, 50(12): 2423-2428. doi: 10.7498/aps.50.2423
计量
  • 文章访问数:  5013
  • PDF下载量:  793
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-02-03
  • 修回日期:  2010-03-31
  • 刊出日期:  2011-01-05

保护气对切割弧特性影响的模拟研究

  • 1. (1)北京应用物理与计算数学研究所,北京 100088;复旦大学现代物理研究所,上海 200433; (2)复旦大学现代物理研究所,上海 200433; (3)中国科学技术大学热科学和能源工程系,合肥 230027

摘要: 通过比较两种不同结构切割炬所产生的等离子体流场,发现保护气对等离子体的温度和速度分布影响很小.垂直保护气在切割炬喷口形成阻碍作用,造成切割炬内的压强有所升高,但是增加不大.两种结构保护气对切割弧的影响只是在炬喷口外的激波附近.加入保护气后激波的强度会减弱.相对于没有保护气的情况,保护气增加冷却作用,弧电压会略有升高.当改变保护气的成分时,发现弧柱区的氧气含量不受影响,所以保护气成分的改变不会影响到弧电压.计算发现轴线处氧气和周围气体的混合很少,在喷口下游10mm处,氧气的摩尔分数仍在90%以上.

English Abstract

参考文献 (34)

目录

    /

    返回文章
    返回