搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

密度泛函理论研究Hg与Auqn(n=1—6, q=0,+1,-1) 团簇的相互作用

孙路石 张安超 向军 郭培红 刘志超 苏胜

引用本文:
Citation:

密度泛函理论研究Hg与Auqn(n=1—6, q=0,+1,-1) 团簇的相互作用

孙路石, 张安超, 向军, 郭培红, 刘志超, 苏胜

Density functional study of interation of Hg with small gold clusters

Sun Lu-Shi, Zhang An-Chao, Xiang Jun, Guo Pei-Hong, Liu Zhi-Chao, Su Sheng
PDF
导出引用
  • 采用密度泛函理论中的广义梯度近似对Hg与小团簇Au qn (n=1—6, q=0, +1, -1)的相互作用进行了系统研究. 结果表明,除Au5+,-团簇外,前线分子轨道理论可以成功预测大部分Au n Hg q 复合物的最低能量结构. Aun团簇对Hg的吸附受团簇尺寸大小和团簇所携带电荷的影
    Elemental mercury (Hg) adsorptions on small neutral, cationic and anionic gold clusters, Auqn (n=1—6, q=0, +1, -1), are systematically investigated by using the density functional theory(DFT) in the generalized gradient approximation. The result shows that the frontier molecular orbital theory (FMOT) is useful for predicting the favorable binding configurations of Hg adsorbed on neutral and charged Aun clusters. Most of the lowest energy AunHg complexes can be successfully predicted. The size and the charge state of the clusters have strong influence on the adsorption of Hg on gold clusters. The adsorption energy on the neutral clusters reaches a local maximum at n=4, which is about 0.661eV. The adsorption energies for cationic clusters decrease with cluster size increasing, although there is a local peak at n=5. Similarly, for anionic clusters, the adsorption energies decrease with cluster size, except for n=3. The adsorption energies on the cationic clusters are generally stronger than those on the neutral and anionic clusters. For the lowest energy AunHg complexes, an approximate linear correlation between the adsorption energy and the Mulliken charge on adsorbed Hg is found. The more the charges transfer to the cluster, the higher the adsorption energy is.
    • 基金项目: 国家重点基础研究发展计划项目(批准号:2010CB227003),国家自然科学基金(批准号:50976038)和河南省重点学科(批准号:507907)资助的课题.
    [1]

    Ren J L,Zhou J S,Luo Z Y,Zhong Y J,Zhang X M 2006 Proceedings of the CSEE 26 1(in Chinese)[任建莉、周劲松、骆仲泱、钟英杰、张雪梅 2006 中国电机工程学报 26 1]

    [2]

    Zhou J S,Wang Y,Hu C X,He S,Luo Z Y,Ni M J,Cen K F 2008 Journal of Power Engineering 28 625(in Chinese)[周劲松、王 岩、胡长兴、何 胜、骆仲泱、倪明江、岑可法 2008 动力工程 28 625]

    [3]

    Guo X,Zheng C G,Jia X H,Lin Z,Liu Y N 2004 Proceedings of the CSEE 24 185(in Chinese)[郭 欣、郑楚光、贾小红、林 钊、刘亚男 2004 中国电机工程学报 24 185]

    [4]

    Yan T Y 1994 Ind. Eng. Chem. Res. 33 3010

    [5]

    Liu Y,Kelly D J A,Yang H Q,Lin C C H,Kuznicki S M,Xu Z H 2008 Envrion. Sci. Technol. 42 6205

    [6]

    Dong J,Xu Z H,Kuznicki S M 2009 Environ. Sci. Technol. 43 3266

    [7]

    Zhao Y X,Mann M,Pavlish J,Mieck B F,Dunham G,Olson E 2006 Environ. Sci. Technol. 40 1603

    [8]

    Poulston S,Granite E J,Pennline H W,Christina R,Myers C R, Stanko D P 2007 Fuel 86 2201

    [9]

    Sasmaz E,Aboud S,Wilcox J 2009 J. Phys. Chem. C 113 7813

    [10]

    Aboud S,Sasmaz E,Wilcox J 2008 Main Group Chemistry 7 205

    [11]

    Steckel J A 2008 Physical Review B 77 115412

    [12]

    Ding X L,Li Z Y,Yang J L,Hou J G,Zhu Q S 2004 J. Chem. Phys. 120 9594

    [13]

    Zhou J,Li Z H,Wang W N,Fan K N 2006 J. Phys. Chem. A 110 7167

    [14]

    Poater A,Duran M,Jaque P,Toro-Labbé A,Solà M 2006 J. Phys. Chem. B 110 6526

    [15]

    Kang G J,Chen Z X,Li Z,He X 2009 J. Chem. Phys. 130 034701

    [16]

    Ding X L,Li Z Y,Yang J L,Hou J G,Zhu Q S 2004 J. Chem. Phys. 121 2558

    [17]

    Ghebriel H W 2007 J. Chem. Phys. 126 244705

    [18]

    Chrétien S,Gordon H,Metiu H 2004 J. Chem. Phys. 121 9925

    [19]

    Chrétien S,Gordon H,Metiu H 2004 J. Chem. Phys. 121 3756

    [20]

    Mao H P,Wang H Y,Sheng Y 2008 Chin. Phys. B 17 2110

    [21]

    Deka A,Deka R C 2008 Journal of Molecular Structure: Theochem 870 83

    [22]

    Delly B 1990 J. Chem. Phys. 92 508

    [23]

    Delly B 2000 J. Chem. Phys. 113 7756

    [24]

    Elanany M,Koyama M,Kubo M,Selvam P,Miyamoto A 2004 Microporous and Mesoporous Materials 71 51

    [25]

    Jennifer W,Joe R,David C J,Marsden P B 2003 Environ. Sci. Technol. 37 4199

    [26]

    Peterson K A,Puzzarini C 2005 Theor. Chem. Acc. 114 283

    [27]

    Wesendrup R,Laerdahl J K,Schwerdtfegera P 1999 J. Chem. Phys. 110 9458

    [28]

    Li Q,Huang Y H,Chen G J 2008 Structural Chemistry(Beijing:Beijing Normal University Press)(in Chinese)[李 奇、黄元河、陈光巨 2008 结构化学(北京: 北京师范大学出版社)]

    [29]

    Wells D H,Delgass W N,Thomsona K T 2002 J. Chem. Phys. 117 10597

    [30]

    Joshi A M, Delgass W N, Thomson K T. 2006 J. Phys. Chem. B 110 23373

    [31]

    Ge G X,Yang Z Q,Cao H B 2009 Acta Phys. Sin. 58 6128(in Chinese)[葛桂贤、杨增强、曹海滨 2009 物理学报58 6128]

    [32]

    Ge G X,Yang Z Q,Jing Q,Luo Y H 2009 Acta Phys. Sin. 58 8236(in Chinese)[葛桂贤、杨增强、井 群、罗有华 2009 物理学报 58 8236]

    [33]

    Lei X L 2010 Chin. Phys. B 19 107103

    [34]

    Zhao W J,Lei X L,Yan Y L,Luo Y H 2007 Acta Phys. Sin. 56 5210(in Chinese)[赵文杰、雷雪玲、闫玉丽、杨致、罗有华 2007 物理学报 56 5210]

    [35]

    Fernández E M,Soler J M,Garzón I L,Balbás L C 2004 Physical Review B 70 165403

  • [1]

    Ren J L,Zhou J S,Luo Z Y,Zhong Y J,Zhang X M 2006 Proceedings of the CSEE 26 1(in Chinese)[任建莉、周劲松、骆仲泱、钟英杰、张雪梅 2006 中国电机工程学报 26 1]

    [2]

    Zhou J S,Wang Y,Hu C X,He S,Luo Z Y,Ni M J,Cen K F 2008 Journal of Power Engineering 28 625(in Chinese)[周劲松、王 岩、胡长兴、何 胜、骆仲泱、倪明江、岑可法 2008 动力工程 28 625]

    [3]

    Guo X,Zheng C G,Jia X H,Lin Z,Liu Y N 2004 Proceedings of the CSEE 24 185(in Chinese)[郭 欣、郑楚光、贾小红、林 钊、刘亚男 2004 中国电机工程学报 24 185]

    [4]

    Yan T Y 1994 Ind. Eng. Chem. Res. 33 3010

    [5]

    Liu Y,Kelly D J A,Yang H Q,Lin C C H,Kuznicki S M,Xu Z H 2008 Envrion. Sci. Technol. 42 6205

    [6]

    Dong J,Xu Z H,Kuznicki S M 2009 Environ. Sci. Technol. 43 3266

    [7]

    Zhao Y X,Mann M,Pavlish J,Mieck B F,Dunham G,Olson E 2006 Environ. Sci. Technol. 40 1603

    [8]

    Poulston S,Granite E J,Pennline H W,Christina R,Myers C R, Stanko D P 2007 Fuel 86 2201

    [9]

    Sasmaz E,Aboud S,Wilcox J 2009 J. Phys. Chem. C 113 7813

    [10]

    Aboud S,Sasmaz E,Wilcox J 2008 Main Group Chemistry 7 205

    [11]

    Steckel J A 2008 Physical Review B 77 115412

    [12]

    Ding X L,Li Z Y,Yang J L,Hou J G,Zhu Q S 2004 J. Chem. Phys. 120 9594

    [13]

    Zhou J,Li Z H,Wang W N,Fan K N 2006 J. Phys. Chem. A 110 7167

    [14]

    Poater A,Duran M,Jaque P,Toro-Labbé A,Solà M 2006 J. Phys. Chem. B 110 6526

    [15]

    Kang G J,Chen Z X,Li Z,He X 2009 J. Chem. Phys. 130 034701

    [16]

    Ding X L,Li Z Y,Yang J L,Hou J G,Zhu Q S 2004 J. Chem. Phys. 121 2558

    [17]

    Ghebriel H W 2007 J. Chem. Phys. 126 244705

    [18]

    Chrétien S,Gordon H,Metiu H 2004 J. Chem. Phys. 121 9925

    [19]

    Chrétien S,Gordon H,Metiu H 2004 J. Chem. Phys. 121 3756

    [20]

    Mao H P,Wang H Y,Sheng Y 2008 Chin. Phys. B 17 2110

    [21]

    Deka A,Deka R C 2008 Journal of Molecular Structure: Theochem 870 83

    [22]

    Delly B 1990 J. Chem. Phys. 92 508

    [23]

    Delly B 2000 J. Chem. Phys. 113 7756

    [24]

    Elanany M,Koyama M,Kubo M,Selvam P,Miyamoto A 2004 Microporous and Mesoporous Materials 71 51

    [25]

    Jennifer W,Joe R,David C J,Marsden P B 2003 Environ. Sci. Technol. 37 4199

    [26]

    Peterson K A,Puzzarini C 2005 Theor. Chem. Acc. 114 283

    [27]

    Wesendrup R,Laerdahl J K,Schwerdtfegera P 1999 J. Chem. Phys. 110 9458

    [28]

    Li Q,Huang Y H,Chen G J 2008 Structural Chemistry(Beijing:Beijing Normal University Press)(in Chinese)[李 奇、黄元河、陈光巨 2008 结构化学(北京: 北京师范大学出版社)]

    [29]

    Wells D H,Delgass W N,Thomsona K T 2002 J. Chem. Phys. 117 10597

    [30]

    Joshi A M, Delgass W N, Thomson K T. 2006 J. Phys. Chem. B 110 23373

    [31]

    Ge G X,Yang Z Q,Cao H B 2009 Acta Phys. Sin. 58 6128(in Chinese)[葛桂贤、杨增强、曹海滨 2009 物理学报58 6128]

    [32]

    Ge G X,Yang Z Q,Jing Q,Luo Y H 2009 Acta Phys. Sin. 58 8236(in Chinese)[葛桂贤、杨增强、井 群、罗有华 2009 物理学报 58 8236]

    [33]

    Lei X L 2010 Chin. Phys. B 19 107103

    [34]

    Zhao W J,Lei X L,Yan Y L,Luo Y H 2007 Acta Phys. Sin. 56 5210(in Chinese)[赵文杰、雷雪玲、闫玉丽、杨致、罗有华 2007 物理学报 56 5210]

    [35]

    Fernández E M,Soler J M,Garzón I L,Balbás L C 2004 Physical Review B 70 165403

  • [1] 栾晓玮, 孙建平, 王凡嵩, 韦慧兰, 胡艺凡. 锑烯吸附金属Li原子的密度泛函研究. 物理学报, 2019, 68(2): 026802. doi: 10.7498/aps.68.20181648
    [2] 张陈俊, 王养丽, 陈朝康. InCn+(n=110)团簇的密度泛函理论研究. 物理学报, 2018, 67(11): 113101. doi: 10.7498/aps.67.20172662
    [3] 祁鹏堂, 陈宏善. Li修饰的C24团簇的储氢性能. 物理学报, 2015, 64(23): 238102. doi: 10.7498/aps.64.238102
    [4] 李传新, 司福祺, 周海金, 刘文清, 胡仁志, 刘凤垒. 基于普通汞灯光源的横向塞曼效应背景校正大气汞检测方法研究. 物理学报, 2014, 63(7): 074202. doi: 10.7498/aps.63.074202
    [5] 吕瑾, 杨丽君, 王艳芳, 马文瑾. Al2Sn(n=210)团簇结构特征和稳定性的密度泛函理论研究. 物理学报, 2014, 63(16): 163601. doi: 10.7498/aps.63.163601
    [6] 温俊青, 张建民, 姚攀, 周红, 王俊斐. PdnAl(n=18)二元团簇的密度泛函理论研究. 物理学报, 2014, 63(11): 113101. doi: 10.7498/aps.63.113101
    [7] 温俊青, 夏涛, 王俊斐. PtnAl (n=18)小团簇的密度泛函理论研究. 物理学报, 2014, 63(2): 023103. doi: 10.7498/aps.63.023103
    [8] 袁健美, 郝文平, 李顺辉, 毛宇亮. Ni(111)表面C原子吸附的密度泛函研究. 物理学报, 2012, 61(8): 087301. doi: 10.7498/aps.61.087301
    [9] 张蓓, 保安, 陈楚, 张军. ConCm(n=15; m=1,2)团簇的密度泛函理论研究. 物理学报, 2012, 61(15): 153601. doi: 10.7498/aps.61.153601
    [10] 黄海深, 王小满, 赵冬秋, 伍良福, 黄晓伟, 李蕴才. 钇覆盖Si@Al12团簇的贮氢性能. 物理学报, 2012, 61(7): 073101. doi: 10.7498/aps.61.073101
    [11] 张致龙, 陈玉红, 任宝兴, 张材荣, 杜瑞, 王伟超. (HMgN3)n(n=15)团簇结构与性质的密度泛函理论研究. 物理学报, 2011, 60(12): 123601. doi: 10.7498/aps.60.123601
    [12] 于永江, 杨传路, 安义鹏, 王华阳. Aun(n=2,3,4)团簇与乙醇分子相互作用的第一性原理研究. 物理学报, 2011, 60(2): 023102. doi: 10.7498/aps.60.023102
    [13] 金蓉, 谌晓洪. 密度泛函理论对ZrnPd团簇结构和性质的研究. 物理学报, 2010, 59(10): 6955-6962. doi: 10.7498/aps.59.6955
    [14] 孙建敏, 赵高峰, 王献伟, 杨雯, 刘岩, 王渊旭. Cu吸附(SiO3)n(n=1—8)团簇几何结构和电子性质的密度泛函研究. 物理学报, 2010, 59(11): 7830-7837. doi: 10.7498/aps.59.7830
    [15] 李喜波, 王红艳, 罗江山, 吴卫东, 唐永建. 密度泛函理论研究ScnO(n=1—9)团簇的结构、稳定性与电子性质. 物理学报, 2009, 58(9): 6134-6140. doi: 10.7498/aps.58.6134
    [16] 杨培芳, 胡娟梅, 滕波涛, 吴锋民, 蒋仕宇. Rh在单壁碳纳米管上吸附的密度泛函理论研究. 物理学报, 2009, 58(5): 3331-3337. doi: 10.7498/aps.58.3331
    [17] 许桂贵, 吴青云, 张健敏, 陈志高, 黄志高. 第一性原理研究氧在Ni(111)表面上的吸附能及功函数. 物理学报, 2009, 58(3): 1924-1930. doi: 10.7498/aps.58.1924
    [18] 陈玉红, 康 龙, 张材荣, 罗永春, 马 军. [Mg(NH2)2]n(n=1—5)团簇的密度泛函理论研究. 物理学报, 2008, 57(8): 4866-4874. doi: 10.7498/aps.57.4866
    [19] 陈玉红, 张材荣, 马 军. MgmBn(m=1,2;n=1—4)团簇结构与性质的密度泛函理论研究. 物理学报, 2006, 55(1): 171-178. doi: 10.7498/aps.55.171
    [20] 曾振华, 邓辉球, 李微雪, 胡望宇. O在Au(111)表面吸附的密度泛函理论研究. 物理学报, 2006, 55(6): 3157-3164. doi: 10.7498/aps.55.3157
计量
  • 文章访问数:  6746
  • PDF下载量:  1034
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-10-08
  • 修回日期:  2010-11-25
  • 刊出日期:  2011-07-15

密度泛函理论研究Hg与Auqn(n=1—6, q=0,+1,-1) 团簇的相互作用

  • 1. (1)河南理工大学机械与动力工程学院,焦作 454003; (2)华中科技大学煤燃烧国家重点实验室,武汉 430074; (3)华中科技大学煤燃烧国家重点实验室,武汉 430074;河南理工大学机械与动力工程学院,焦作 454003
    基金项目: 国家重点基础研究发展计划项目(批准号:2010CB227003),国家自然科学基金(批准号:50976038)和河南省重点学科(批准号:507907)资助的课题.

摘要: 采用密度泛函理论中的广义梯度近似对Hg与小团簇Au qn (n=1—6, q=0, +1, -1)的相互作用进行了系统研究. 结果表明,除Au5+,-团簇外,前线分子轨道理论可以成功预测大部分Au n Hg q 复合物的最低能量结构. Aun团簇对Hg的吸附受团簇尺寸大小和团簇所携带电荷的影

English Abstract

参考文献 (35)

目录

    /

    返回文章
    返回