搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

扰动Vakhnenko方程物理模型的行波解

莫嘉琪

引用本文:
Citation:

扰动Vakhnenko方程物理模型的行波解

莫嘉琪

Travelling wave solution of disturbed Vakhnenko equation for physical model

Mo Jia-Qi
PDF
导出引用
  • 研究了一类扰动Vakhnemko方程.给出了改进的渐近方法.首先, 对原模型系统对应的典型方程得到对应的行波解.其次, 引入一个泛函, 建立迭代关系式,将求解非线性问题转化为求解一系列的迭代序列.然后, 逐次地求出对应的解的近似式, 最后,得到了原扰动Vakhnemko模型行波解的任意次精度的近似展开式,并讨论了它的精度.
    A kind of disturbed Vakhnemko equation is considered. The modified asymptotic method is given. Firstly, we obtain corresponding traveling wave solution of the typical Vakhnemko equation. Secondly, introducing a functional, constructing the iteration expansion of solution, the nonlinear equation is converted into a set of iteration sequence. And then, the corresponding approximations of solution are solved successively. Finally, the approximate expansion for arbitrary order accuracy of the travelling wave solution for the original disturbed Vakhnemko model is obtained and its accuracy is discussed.
    • 基金项目: 国家自然科学基金(批准号:40876010), 中国科学院知识创新工程重要方向项目(批准号:KZCX2-YW-Q03-08), 公益性行业科研专项(批准号:GYHY200806010), LASG国家重点实验室专项经费, 上海市教育委员会E-研究院建设计划项目(批准号:E03004),浙江省自然科学基金(批准号:Y6110502)和安徽高校省级自然科学研究项目(批准号:KJ2011A135)资助的课题.
    [1]

    McPhaden M J, Zhang D 2002 Nature 415 603

    [2]

    Gu D F, Philander S G H 1997 Science 275 805

    [3]

    Ma S H, Qiang J Y, Fang J P 2007 Acta Phys. Sin. 56 620 (in Chinese) [马松华、 强继业、 方建平 2007 物理学报 56 620]

    [4]

    Ma S H, Qiang, J Y, Fang J P 2007 Comm. Theor. Phys. 48 662

    [5]

    Loutsenko I 2006 Comm. Math. Phys. 268 465

    [6]

    Parkes E J 2008 Chaos Solitons Fractals 38 154

    [7]

    Li X Z, Wang M L 2007 Phys. Lett. A 361 115

    [8]

    Cheng X P, Lin J, Yao J M 2009 Chin. Phys. B 18 391

    [9]

    Sirendaoreji, Jiong S 2003 Phys. Lett. A 309 387

    [10]

    You F C, Zhang J, Hao H H 2009 Chin. Phys. Lett. 26 090201

    [11]

    Jia X Y, Wang N 2009 Chin. Phys. Lett. 26 080201

    [12]

    Chen C, Zhou Z X 2009 Chin. Phys. Lett. 26 080504

    [13]

    Huang D J, Mei J Q, Zhang H Q 2009 Chin. Phys. Lett. 26 050202

    [14]

    Jiao X Y, Yao R X, Lou S Y 2009 Chin. Phys. Lett. 26 040202

    [15]

    Pan L X, Zuo W M, Yan J R 2005 Acta Phys. Sin. 54 1 (in Chinese)[潘留仙、左伟明、颜家壬 2005 物理学报 54 1]

    [16]

    Li W A, Chen H, Zhang G C 2009 Chin. Phys. B 18 400

    [17]

    He J H, Wu X H 2006 Chaos, Solitions & Fractals 29 108

    [18]

    Ni W M, Wei J C 2006 J. Differ. Equations 221 158

    [19]

    Bartier J P 2006 Asymptotic Anal. 46 325

    [20]

    Libre J, da Silva P R, Teixeira M A 2007 J. Dyn. Differ. Equations 19 309

    [21]

    Guarguaglini F R, Natalini R 2007 Commun. Partial Differ. Equations 32 163

    [22]

    Mo J Q, Lin W T J. Sys. Sci. & Complexity 20 119

    [23]

    Mo J Q, 2010 Chin. Phys. B 19 010203

    [24]

    Mo J Q, Wang H 2007 Acta Ecologica Sinica 27 4366

    [25]

    Mo J Q, Zhu J, Wang H 2003 Prog. Nat. Sci. 13 768

    [26]

    Mo J Q 2009 Chin. Phys. Lett. 26 010204

    [27]

    Mo J Q 2009 Chin Phys. Lett. 26 060202

    [28]

    Mo J Q, Lin Y H, Lin W T 2010 Chin. Phys. B 19 030202

    [29]

    Mo J Q, Chen X F 2010 Acta Phys. Sin. 59 2919 (in Chinese) [莫嘉琪、陈贤峰 2010 物理学报 59 2919]

    [30]

    Mo J Q 2009 Science in China G 39 568

    [31]

    Mo J Q, Lin W T, Wang H 2008 Chin. Geographical Sci. 18 193

    [32]

    Mo J Q, Lin W T, Wang H 2007 Prog. Nat. Sci. 17 230

    [33]

    Mo J Q, Lin Y H, Lin W T 2009 Acta Phys. Sin. 58 6692 (in Chinese) [莫嘉琪、林一骅、林万涛 2009 物理学报 58 6692]

    [34]

    Mo J Q, Lin W T, Lin Y H 2007 Acta Phys. Sin. 56 3127 (in Chinese)[莫嘉琪、林万涛、林一骅 2007 物理学报 56 3127]

    [35]

    Mo J Q, Lin W T, Wang H 2009 Acta Math. Sci. 29B 101

    [36]

    Mo J Q, Lin W T, Wang H 2007 Chin. Phys. 16 951

    [37]

    Mo J Q, Lin W T 2008 Chin. Phys. B 17 370

    [38]

    Mo J Q, Lin W T 2008 Chin. Phys. B 17 743

    [39]

    Mo J Q, Lin W T, Lin Y H 2009 Chin. Phys. B 18 3624

    [40]

    Haraux A 181. Nonlinear Evolution Equation-Global Behavior of Solution (Lecture Notes in Mathemstics 841 Berlin: Springer-Verlager)

    [41]

    de Jager E M, JiangFuru 1996 The Theory of Singular Perturbation (Amsterdam: North- Holland Publishing)

  • [1]

    McPhaden M J, Zhang D 2002 Nature 415 603

    [2]

    Gu D F, Philander S G H 1997 Science 275 805

    [3]

    Ma S H, Qiang J Y, Fang J P 2007 Acta Phys. Sin. 56 620 (in Chinese) [马松华、 强继业、 方建平 2007 物理学报 56 620]

    [4]

    Ma S H, Qiang, J Y, Fang J P 2007 Comm. Theor. Phys. 48 662

    [5]

    Loutsenko I 2006 Comm. Math. Phys. 268 465

    [6]

    Parkes E J 2008 Chaos Solitons Fractals 38 154

    [7]

    Li X Z, Wang M L 2007 Phys. Lett. A 361 115

    [8]

    Cheng X P, Lin J, Yao J M 2009 Chin. Phys. B 18 391

    [9]

    Sirendaoreji, Jiong S 2003 Phys. Lett. A 309 387

    [10]

    You F C, Zhang J, Hao H H 2009 Chin. Phys. Lett. 26 090201

    [11]

    Jia X Y, Wang N 2009 Chin. Phys. Lett. 26 080201

    [12]

    Chen C, Zhou Z X 2009 Chin. Phys. Lett. 26 080504

    [13]

    Huang D J, Mei J Q, Zhang H Q 2009 Chin. Phys. Lett. 26 050202

    [14]

    Jiao X Y, Yao R X, Lou S Y 2009 Chin. Phys. Lett. 26 040202

    [15]

    Pan L X, Zuo W M, Yan J R 2005 Acta Phys. Sin. 54 1 (in Chinese)[潘留仙、左伟明、颜家壬 2005 物理学报 54 1]

    [16]

    Li W A, Chen H, Zhang G C 2009 Chin. Phys. B 18 400

    [17]

    He J H, Wu X H 2006 Chaos, Solitions & Fractals 29 108

    [18]

    Ni W M, Wei J C 2006 J. Differ. Equations 221 158

    [19]

    Bartier J P 2006 Asymptotic Anal. 46 325

    [20]

    Libre J, da Silva P R, Teixeira M A 2007 J. Dyn. Differ. Equations 19 309

    [21]

    Guarguaglini F R, Natalini R 2007 Commun. Partial Differ. Equations 32 163

    [22]

    Mo J Q, Lin W T J. Sys. Sci. & Complexity 20 119

    [23]

    Mo J Q, 2010 Chin. Phys. B 19 010203

    [24]

    Mo J Q, Wang H 2007 Acta Ecologica Sinica 27 4366

    [25]

    Mo J Q, Zhu J, Wang H 2003 Prog. Nat. Sci. 13 768

    [26]

    Mo J Q 2009 Chin. Phys. Lett. 26 010204

    [27]

    Mo J Q 2009 Chin Phys. Lett. 26 060202

    [28]

    Mo J Q, Lin Y H, Lin W T 2010 Chin. Phys. B 19 030202

    [29]

    Mo J Q, Chen X F 2010 Acta Phys. Sin. 59 2919 (in Chinese) [莫嘉琪、陈贤峰 2010 物理学报 59 2919]

    [30]

    Mo J Q 2009 Science in China G 39 568

    [31]

    Mo J Q, Lin W T, Wang H 2008 Chin. Geographical Sci. 18 193

    [32]

    Mo J Q, Lin W T, Wang H 2007 Prog. Nat. Sci. 17 230

    [33]

    Mo J Q, Lin Y H, Lin W T 2009 Acta Phys. Sin. 58 6692 (in Chinese) [莫嘉琪、林一骅、林万涛 2009 物理学报 58 6692]

    [34]

    Mo J Q, Lin W T, Lin Y H 2007 Acta Phys. Sin. 56 3127 (in Chinese)[莫嘉琪、林万涛、林一骅 2007 物理学报 56 3127]

    [35]

    Mo J Q, Lin W T, Wang H 2009 Acta Math. Sci. 29B 101

    [36]

    Mo J Q, Lin W T, Wang H 2007 Chin. Phys. 16 951

    [37]

    Mo J Q, Lin W T 2008 Chin. Phys. B 17 370

    [38]

    Mo J Q, Lin W T 2008 Chin. Phys. B 17 743

    [39]

    Mo J Q, Lin W T, Lin Y H 2009 Chin. Phys. B 18 3624

    [40]

    Haraux A 181. Nonlinear Evolution Equation-Global Behavior of Solution (Lecture Notes in Mathemstics 841 Berlin: Springer-Verlager)

    [41]

    de Jager E M, JiangFuru 1996 The Theory of Singular Perturbation (Amsterdam: North- Holland Publishing)

  • [1] 胡亮, 罗懋康. 柱面非线性麦克斯韦方程组的行波解. 物理学报, 2017, 66(13): 130302. doi: 10.7498/aps.66.130302
    [2] 石兰芳, 朱敏, 周先春, 汪维刚, 莫嘉琪. 一类非线性发展方程孤立子行波解. 物理学报, 2014, 63(13): 130201. doi: 10.7498/aps.63.130201
    [3] 尚亚东, 黄勇. 非线性LC电路方程的显式精确行波解. 物理学报, 2013, 62(7): 070203. doi: 10.7498/aps.62.070203
    [4] 欧阳成, 石兰芳, 林万涛, 莫嘉琪. (2+1)维扰动时滞破裂孤波方程行波解的摄动方法. 物理学报, 2013, 62(17): 170201. doi: 10.7498/aps.62.170201
    [5] 吉飞宇, 张顺利. 带有扰动非线性源的多孔介质方程的近似泛函分离变量. 物理学报, 2012, 61(8): 080202. doi: 10.7498/aps.61.080202
    [6] 莫嘉琪, 程荣军, 葛红霞. 具有控制项的弱非线性发展方程行波解. 物理学报, 2011, 60(5): 050204. doi: 10.7498/aps.60.050204
    [7] 李向正, 张卫国, 原三领. LS解法和Fisher方程行波系统的定性分析. 物理学报, 2010, 59(2): 744-749. doi: 10.7498/aps.59.744
    [8] 潘军廷, 龚伦训. 组合KdV-mKdV方程的Jacobi椭圆函数解. 物理学报, 2007, 56(10): 5585-5590. doi: 10.7498/aps.56.5585
    [9] 龚伦训. 非线性薛定谔方程的Jacobi椭圆函数解. 物理学报, 2006, 55(9): 4414-4419. doi: 10.7498/aps.55.4414
    [10] 于亚璇, 王 琪, 赵雪芹, 智红燕, 张鸿庆. 求解非线性差分方程孤立波解的直接代数法. 物理学报, 2005, 54(9): 3992-3994. doi: 10.7498/aps.54.3992
    [11] 智红燕, 王 琪, 张鸿庆. (2+1) 维Broer-Kau-Kupershmidt方程一系列新的精确解. 物理学报, 2005, 54(3): 1002-1008. doi: 10.7498/aps.54.1002
    [12] 吕大昭. 非线性发展方程的丰富的Jacobi椭圆函数解. 物理学报, 2005, 54(10): 4501-4505. doi: 10.7498/aps.54.4501
    [13] 赵长海, 盛正卯. Zakharov方程的显式行波解. 物理学报, 2004, 53(6): 1629-1634. doi: 10.7498/aps.53.1629
    [14] 刘官厅, 范天佑. 一般变换下的Jacobi椭圆函数展开法及应用. 物理学报, 2004, 53(3): 676-679. doi: 10.7498/aps.53.676
    [15] 李画眉, 林 机, 许友生. 两组新的广义的Ito方程组的多种行波解. 物理学报, 2004, 53(2): 349-355. doi: 10.7498/aps.53.349
    [16] 吕克璞, 石玉仁, 段文山, 赵金保. KdV-Burgers方程的孤波解. 物理学报, 2001, 50(11): 2073-2076. doi: 10.7498/aps.50.2073
    [17] 朱佐农. KdV型方程孤波解与KdV-Burgers型方程行波解的稳定性. 物理学报, 1996, 45(7): 1087-1090. doi: 10.7498/aps.45.1087
    [18] 吕咸青. KdVB方程行波解的渐近分析. 物理学报, 1992, 41(2): 177-181. doi: 10.7498/aps.41.177
    [19] 陈德芳, 楼森岳. KdV方程与高阶KdV方程行波解之间的形变理论. 物理学报, 1991, 40(4): 513-521. doi: 10.7498/aps.40.513
    [20] 唐世敏. 若干非线性波方程的行波解. 物理学报, 1991, 40(11): 1818-1826. doi: 10.7498/aps.40.1818
计量
  • 文章访问数:  5745
  • PDF下载量:  520
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-11-14
  • 修回日期:  2010-12-03
  • 刊出日期:  2011-09-15

扰动Vakhnenko方程物理模型的行波解

  • 1. 安徽师范大学数学系,芜湖 241003;上海高校计算科学E-研究院SJTU研究所,上海 200240
    基金项目: 国家自然科学基金(批准号:40876010), 中国科学院知识创新工程重要方向项目(批准号:KZCX2-YW-Q03-08), 公益性行业科研专项(批准号:GYHY200806010), LASG国家重点实验室专项经费, 上海市教育委员会E-研究院建设计划项目(批准号:E03004),浙江省自然科学基金(批准号:Y6110502)和安徽高校省级自然科学研究项目(批准号:KJ2011A135)资助的课题.

摘要: 研究了一类扰动Vakhnemko方程.给出了改进的渐近方法.首先, 对原模型系统对应的典型方程得到对应的行波解.其次, 引入一个泛函, 建立迭代关系式,将求解非线性问题转化为求解一系列的迭代序列.然后, 逐次地求出对应的解的近似式, 最后,得到了原扰动Vakhnemko模型行波解的任意次精度的近似展开式,并讨论了它的精度.

English Abstract

参考文献 (41)

目录

    /

    返回文章
    返回