-
钇铁石榴石(yttrium iron garnet, YIG)的自旋输运特性一直是自旋电子学的研究重点之一. Bi作为YIG最常见的掺杂元素, 其薄膜BixY3–xFe5O12的磁光特性已经被广泛研究. 但Bi3+取代Y3+对YIG自旋输运的影响规律还没有被系统地研究过. 本文利用溶液旋涂法制备了不同掺杂比的BixY3–xFe5O12薄膜, 并研究Bi掺杂对YIG薄膜形貌结构和自旋输运性能的影响. 结果表明Bi掺杂没有改变YIG的晶体结构, 掺杂比上升令薄膜的吸收强度增大, 带隙减小. XPS表明了Bi3+和Bi2+的存在. Bi掺杂在自旋输运上的调控体现在BixY3–xFe5O12薄膜的磁振子扩散长度相比纯YIG薄膜有所减小. 同时研究发现Pt/ BixY3–xFe5O12薄膜中依然可以检测到明显的自旋霍尔磁电阻, 并在x = 0.3时振幅最大.Yttrium iron garnet (YIG), as a room temperature ferrimagnetic insulator with low damping and narrow ferromagnetic resonance linewidth, has been the research hotspot in spintronics because of its spin transport properties. Bi is one of the most common doping elements used in YIG, and some researches have proved that it can tune the magnetic properties of YIG. Previous studies of BixY3–xFe5O12 thin films focused on the evolutions of their structures, morphologies, and magnetic characteristics. Yet, the effects of Bi3+ substitution of Y3+ on spin transport in YIG thin films have not been systematically studied. The regulation of YIG spin transport by doping is expected to provide a new idea for the spintronics exploration of Pt/YIG system. In this work, we prepare a series of BixY3–xFe5O12 films with different doping ratios by spin coating. And we investigate the effects of Bi3+ on morphology, structure and spin transport properties of YIG films. The results show that Bi doping does not change the crystal structure of YIG. The absorption of the film increases and the bandgap decreases with the increase of doping ratio. The X-ray photoelectron spectroscopy (XPS) indicates the co-existence of Bi3+ and Bi2+. The regulation of Bi doping on spin transport is reflected in the fact that the magnon diffusion length of BixY3–xFe5O12 films is significantly smaller than that of pure YIG films. Meanwhile, we find that the obvious spin Hall magnetoresistance can still be detected in the Pt/BixY3–xFe5O12 heterostructure, and the amplitude is the largest when x = 0.3.
-
Keywords:
- Yttrium iron garnet /
- Bi doping /
- spin transport /
- spin coating
[1] Gomez-Perez J M, Velez S, Hueso L E, Casanova F 2020 Phys. Rev. B 101 184420Google Scholar
[2] Cornelissen L J, Peters K J H, Bauer G E W, Duine R A, van Wees B J 2016 Phys. Rev. B 94 014412Google Scholar
[3] Giles B L, Yang Z H, Jamison J S, Myers R C 2015 Phys. Rev. B 92 224415Google Scholar
[4] Shan J, Cornelissen L J, Vlietstra N, Ben Youssef J, Kuschel T, Duine R A, van Wees B J 2016 Phys. Rev. B 94 174437Google Scholar
[5] 宋邦菊, 金钻明, 郭晨阳, 阮舜逸, 李炬赓, 万蔡华, 韩秀峰, 马国宏, 姚建铨 2020 物理学报 69 208704Google Scholar
Song B J, Jin Z M, Guo C Y, Ruan S Y, Li J G, Wan C H, Han X F, Ma G H, Yao J Q 2020 Acta Phys. Sin. 69 208704Google Scholar
[6] 杨萌, 白鹤, 李刚, 朱照照, 竺云, 苏鉴, 蔡建旺 2021 物理学报 70 077501Google Scholar
Yang M, Bai H, Li G, Zhu Z, Zhu Y, Su J, Cai J 2021 Acta Phys. Sin. 70 077501Google Scholar
[7] Uchida K, Adachi H, Ota T, Nakayama H, Maekawa S, Saitoh E 2010 Appl. Phys. Lett. 97 172505Google Scholar
[8] Nakayama H, Althammer M, Chen Y T, Uchida K, Kajiwara Y, Kikuchi D, Ohtani T, Geprags S, Opel M, Takahashi S, Gross R, Bauer G E W, Goennenwein S T B, Saitoh E 2013 Phys. Rev. Lett. 110 206601Google Scholar
[9] Meyer S, Chen Y T, Wimmer S, Althammer M, Wimmer T, Schlitz R, Geprags S, Huebl H, Kodderitzsch D, Ebert H, Bauer G E W, Gross R, Goennenwein S T B 2017 Nat. Mater. 16 977Google Scholar
[10] Weiler M, Althammer M, Schreier M, Lotze J, Pernpeintner M, Meyer S, Huebl H, Gross R, Kamra A, Xiao J, Chen Y T, Jiao H J, Bauer G E W, Goennenwein S T B 2013 Phys. Rev. Lett. 111 176601Google Scholar
[11] Zhou L F, Song H K, Liu K, Luan Z Z, Wang P, Sun L, Jiang S W, Xiang H J, Chen Y B, Du J, Ding H F, Xia K, Xiao J, Wu D 2018 Sci. Adv. 4 eaao3318Google Scholar
[12] Huang M, Xu Z C 2004 Thin Solid Films 450 324Google Scholar
[13] Xu H T, Yang H, Xu W, Yu L X 2008 Curr. Appl. Phys. 8 1Google Scholar
[14] Aparnadevi N, Kumar K S, Manikandan M, Kumar B S, Punitha J S, Venkateswaran C 2020 J. Mater. Sci-Mater. El. 31 2081Google Scholar
[15] Wittekoek S, Popma T J A, Robertson J M, Bongers P F 1975 Phys. Rev. B 12 2777Google Scholar
[16] Matsumoto K, Yamaguchi K, Fujii T, Ueno A 1991 J. Appl. Phys. 69 5918Google Scholar
[17] Guillot M, Ostorero J, Armstrong G, Zhang F, Xu Y 2005 J. Appl. Phys. 97 10f106Google Scholar
[18] Rehspringer J L, Bursik J, Niznansky D, Klarikova A 2000 J. Magn. Magn. Mater. 211 291Google Scholar
[19] Raja A, Gazzali P M M, Chandrasekaran G 2021 Phys. B-Condens. Mat. 613 412988Google Scholar
[20] Atuchin V V, Aleksandrovsky A S, Chimitova O D, Gavrilova T A, Krylov A S, Molokeev M S, Oreshonkov A S, Bazarov B G, Bazarova J G 2014 J. Phys. Chem. C 118 15404Google Scholar
[21] Pena-Garcia R, Guerra Y, Buitrago D M, Leal L R F, Santos F E P, Padron-Hernandez E 2018 Ceram. Int. 44 11314Google Scholar
[22] Costantini J M, Miro S, Beuneu F, Toulemonde M 2015 J. Phys-Condens. Mat. 27 496001Google Scholar
[23] Fechine P B A, Silva E N, de Menezes A S, Derov J, Stewart J W, Drehman A J, Vasconcelos I F, Ayala A P, Cardoso L P, Sombra A S B 2009 J. Phys. Chem. Solids 70 202Google Scholar
[24] Fernandez-Garcia L, Suarez M, Menendez J L 2010 J. Alloy. Compd. 495 196Google Scholar
[25] Jin L C, Jia K C, He Y J, Wang G, Zhong Z Y, Zhang H W 2019 Appl. Surf. Sci. 483 947Google Scholar
[26] Paiva D V M, Silva M A S, Ribeiro T S, Vasconcelos I F, Sombra A S B, Goes J C, Fechine P B A 2015 J. Alloy. Compd. 644 763Google Scholar
[27] Khanra S, Bhaumik A, Kolekar Y D, Kahol P, Ghosh K 2014 J. Magn. Magn. Mater. 369 14Google Scholar
[28] Wang S H, Li G, Guo E J, Zhao Y, Wang J Y, Zou L K, Yan H, Cai J W, Zhang Z T, Wang M, Tian Y Y, Zheng X L, Sun J R, Jin K X 2018 Phys. Rev. Mater. 2 051401(RGoogle Scholar
[29] Uchida K, Ishida M, Kikkawa T, Kirihara A, Murakami T, Saitoh E 2014 J. Phys-Condens. Mat. 26 343202Google Scholar
[30] Wiengarten A, Seufert K, Auwarter W, Ecija D, Diller K, Allegretti F, Bischoff F, Fischer S, Duncan D A, Papageorgiou A C, Klappenberger F, Acres R G, Ngo T H, Barth J V 2014 J. Am. Chem. Soc. 136 9346Google Scholar
[31] Abdullah E A, Abdullah A H, Zainal Z, Hussein M Z, Ban T K 2012 J. Environ. Sci. 24 1876Google Scholar
[32] Siao Y J, Qi X D, Lin C R, Huang J C A 2011 J. Appl. Phys. 109 07a508Google Scholar
[33] Scott G B, Lacklison D E, Page J L 1974 Phys. Rev. B 10 971Google Scholar
[34] Sparks M, Loudon R, Kittel C 1961 Phys. Rev. 122 791Google Scholar
[35] Jin H Y, Boona S R, Yang Z H, Myers R C, Heremans J P 2015 Phys. Rev. B 92 054436Google Scholar
[36] Kikkawa T, Uchida K, Daimon S, Qiu Z Y, Shiomi Y, Saitoh E 2015 Phys. Rev. B 92 064413Google Scholar
[37] Rezende S M, Rodriguez-Suarez R L, Cunha R O, Rodrigues A R, Machado F L A, Guerra G A F, Ortiz J C L, Azevedo A 2014 Phys. Rev. B 89 014416Google Scholar
[38] Wang S H, Li G, Wang J Y, Tian Y Y, Zhang H R, Zou L K, Sun J R, Jin K X 2018 Chinese Phys. B 27 117201Google Scholar
[39] Chen Y T, Takahashi S, Nakayama H, Althammer M, Goennenwein S T B, Saitoh E, Bauer G E W 2013 Phys. Rev. B 87 144411Google Scholar
-
图 2 x = 0, 0.3, 0.5和1时BixY3–xFe5O12薄膜的(a) AFM图像; (b)薄膜实物图; (c)拉曼光谱; (d)吸收谱(插图为带隙宽度-x关系图); (e) SSE实验装置图; (f)归一化VISHE-H曲线; (g)矫顽场HC-x关系图
Fig. 2. (a) AFM images; (b) photograph of films; (c) Raman spectra; (d) absorption spectra (the insert of (d) is the dependence of bandgap on x); (e) schematic diagram of the SSE experimental setup; (f) normalized VISHE-H curves and (g) the dependence of coercive field HC on x of BixY3–xFe5O12 films at x = 0, 0.3, 0.5 and 1.
图 4 (a)实验装置示意图; (b) BixY3–xFe5O12薄膜(x = 0, 0.3, 0.5和1)的VISHE-激光位置的测试数据(点)和拟合数据(曲线), 其中灰色区域表示激光光斑照射在Pt电极上; (c)x和扩散长度的关系
Fig. 4. (a) Schematic diagram of experimental device; (b) dependence of VISHE on laser position in BixY3–xFe5O12 films (x = 0, 0.3, 0.5 and 1), where the points are test data and the curves are fitting data. The gray area in (b) indicates that the laser spot irradiates on the Pt electrode; (c) dependence of diffusion length on x.
图 5 (a)横向SMR测试示意图; (b) x = 0, 0.3, 0.5和1时, Pt/ BixY3–xFe5O12薄膜的RSMR/R0-θ的测试数据(点)和拟合数据(曲线); (c)RSMR/R0-x关系图
Fig. 5. (a) Schematic diagram of experimental device of transverse SMR; (b) when x = 0, 0.3, 0.5 and 1, the dependence of RSMR/R0-θ test data (points) and fitting data (curves) in Pt/ BixY3–xFe5O12 films; (c) dependence of RSMR/R0 on x.
-
[1] Gomez-Perez J M, Velez S, Hueso L E, Casanova F 2020 Phys. Rev. B 101 184420Google Scholar
[2] Cornelissen L J, Peters K J H, Bauer G E W, Duine R A, van Wees B J 2016 Phys. Rev. B 94 014412Google Scholar
[3] Giles B L, Yang Z H, Jamison J S, Myers R C 2015 Phys. Rev. B 92 224415Google Scholar
[4] Shan J, Cornelissen L J, Vlietstra N, Ben Youssef J, Kuschel T, Duine R A, van Wees B J 2016 Phys. Rev. B 94 174437Google Scholar
[5] 宋邦菊, 金钻明, 郭晨阳, 阮舜逸, 李炬赓, 万蔡华, 韩秀峰, 马国宏, 姚建铨 2020 物理学报 69 208704Google Scholar
Song B J, Jin Z M, Guo C Y, Ruan S Y, Li J G, Wan C H, Han X F, Ma G H, Yao J Q 2020 Acta Phys. Sin. 69 208704Google Scholar
[6] 杨萌, 白鹤, 李刚, 朱照照, 竺云, 苏鉴, 蔡建旺 2021 物理学报 70 077501Google Scholar
Yang M, Bai H, Li G, Zhu Z, Zhu Y, Su J, Cai J 2021 Acta Phys. Sin. 70 077501Google Scholar
[7] Uchida K, Adachi H, Ota T, Nakayama H, Maekawa S, Saitoh E 2010 Appl. Phys. Lett. 97 172505Google Scholar
[8] Nakayama H, Althammer M, Chen Y T, Uchida K, Kajiwara Y, Kikuchi D, Ohtani T, Geprags S, Opel M, Takahashi S, Gross R, Bauer G E W, Goennenwein S T B, Saitoh E 2013 Phys. Rev. Lett. 110 206601Google Scholar
[9] Meyer S, Chen Y T, Wimmer S, Althammer M, Wimmer T, Schlitz R, Geprags S, Huebl H, Kodderitzsch D, Ebert H, Bauer G E W, Gross R, Goennenwein S T B 2017 Nat. Mater. 16 977Google Scholar
[10] Weiler M, Althammer M, Schreier M, Lotze J, Pernpeintner M, Meyer S, Huebl H, Gross R, Kamra A, Xiao J, Chen Y T, Jiao H J, Bauer G E W, Goennenwein S T B 2013 Phys. Rev. Lett. 111 176601Google Scholar
[11] Zhou L F, Song H K, Liu K, Luan Z Z, Wang P, Sun L, Jiang S W, Xiang H J, Chen Y B, Du J, Ding H F, Xia K, Xiao J, Wu D 2018 Sci. Adv. 4 eaao3318Google Scholar
[12] Huang M, Xu Z C 2004 Thin Solid Films 450 324Google Scholar
[13] Xu H T, Yang H, Xu W, Yu L X 2008 Curr. Appl. Phys. 8 1Google Scholar
[14] Aparnadevi N, Kumar K S, Manikandan M, Kumar B S, Punitha J S, Venkateswaran C 2020 J. Mater. Sci-Mater. El. 31 2081Google Scholar
[15] Wittekoek S, Popma T J A, Robertson J M, Bongers P F 1975 Phys. Rev. B 12 2777Google Scholar
[16] Matsumoto K, Yamaguchi K, Fujii T, Ueno A 1991 J. Appl. Phys. 69 5918Google Scholar
[17] Guillot M, Ostorero J, Armstrong G, Zhang F, Xu Y 2005 J. Appl. Phys. 97 10f106Google Scholar
[18] Rehspringer J L, Bursik J, Niznansky D, Klarikova A 2000 J. Magn. Magn. Mater. 211 291Google Scholar
[19] Raja A, Gazzali P M M, Chandrasekaran G 2021 Phys. B-Condens. Mat. 613 412988Google Scholar
[20] Atuchin V V, Aleksandrovsky A S, Chimitova O D, Gavrilova T A, Krylov A S, Molokeev M S, Oreshonkov A S, Bazarov B G, Bazarova J G 2014 J. Phys. Chem. C 118 15404Google Scholar
[21] Pena-Garcia R, Guerra Y, Buitrago D M, Leal L R F, Santos F E P, Padron-Hernandez E 2018 Ceram. Int. 44 11314Google Scholar
[22] Costantini J M, Miro S, Beuneu F, Toulemonde M 2015 J. Phys-Condens. Mat. 27 496001Google Scholar
[23] Fechine P B A, Silva E N, de Menezes A S, Derov J, Stewart J W, Drehman A J, Vasconcelos I F, Ayala A P, Cardoso L P, Sombra A S B 2009 J. Phys. Chem. Solids 70 202Google Scholar
[24] Fernandez-Garcia L, Suarez M, Menendez J L 2010 J. Alloy. Compd. 495 196Google Scholar
[25] Jin L C, Jia K C, He Y J, Wang G, Zhong Z Y, Zhang H W 2019 Appl. Surf. Sci. 483 947Google Scholar
[26] Paiva D V M, Silva M A S, Ribeiro T S, Vasconcelos I F, Sombra A S B, Goes J C, Fechine P B A 2015 J. Alloy. Compd. 644 763Google Scholar
[27] Khanra S, Bhaumik A, Kolekar Y D, Kahol P, Ghosh K 2014 J. Magn. Magn. Mater. 369 14Google Scholar
[28] Wang S H, Li G, Guo E J, Zhao Y, Wang J Y, Zou L K, Yan H, Cai J W, Zhang Z T, Wang M, Tian Y Y, Zheng X L, Sun J R, Jin K X 2018 Phys. Rev. Mater. 2 051401(RGoogle Scholar
[29] Uchida K, Ishida M, Kikkawa T, Kirihara A, Murakami T, Saitoh E 2014 J. Phys-Condens. Mat. 26 343202Google Scholar
[30] Wiengarten A, Seufert K, Auwarter W, Ecija D, Diller K, Allegretti F, Bischoff F, Fischer S, Duncan D A, Papageorgiou A C, Klappenberger F, Acres R G, Ngo T H, Barth J V 2014 J. Am. Chem. Soc. 136 9346Google Scholar
[31] Abdullah E A, Abdullah A H, Zainal Z, Hussein M Z, Ban T K 2012 J. Environ. Sci. 24 1876Google Scholar
[32] Siao Y J, Qi X D, Lin C R, Huang J C A 2011 J. Appl. Phys. 109 07a508Google Scholar
[33] Scott G B, Lacklison D E, Page J L 1974 Phys. Rev. B 10 971Google Scholar
[34] Sparks M, Loudon R, Kittel C 1961 Phys. Rev. 122 791Google Scholar
[35] Jin H Y, Boona S R, Yang Z H, Myers R C, Heremans J P 2015 Phys. Rev. B 92 054436Google Scholar
[36] Kikkawa T, Uchida K, Daimon S, Qiu Z Y, Shiomi Y, Saitoh E 2015 Phys. Rev. B 92 064413Google Scholar
[37] Rezende S M, Rodriguez-Suarez R L, Cunha R O, Rodrigues A R, Machado F L A, Guerra G A F, Ortiz J C L, Azevedo A 2014 Phys. Rev. B 89 014416Google Scholar
[38] Wang S H, Li G, Wang J Y, Tian Y Y, Zhang H R, Zou L K, Sun J R, Jin K X 2018 Chinese Phys. B 27 117201Google Scholar
[39] Chen Y T, Takahashi S, Nakayama H, Althammer M, Goennenwein S T B, Saitoh E, Bauer G E W 2013 Phys. Rev. B 87 144411Google Scholar
计量
- 文章访问数: 3975
- PDF下载量: 73
- 被引次数: 0