搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

晶粒尺寸对钙钛矿型压电陶瓷压电性能的影响

刘亦轩 李昭 汤浩正 逯景桐 李敬锋 龚文 王轲

引用本文:
Citation:

晶粒尺寸对钙钛矿型压电陶瓷压电性能的影响

刘亦轩, 李昭, 汤浩正, 逯景桐, 李敬锋, 龚文, 王轲

Grain size effect on piezoelectric performance in perovskite-based piezoceramics

Liu Yi-Xuan, Li Zhao, Thong Hao-Cheng, Lu Jing-Tong, Li Jing-Feng, Gong Wen, Wang Ke
PDF
HTML
导出引用
  • 压电陶瓷能够通过正/逆压电效应实现电能与机械能之间的相互转化, 在电子信息、通信、传感等领域中具有广阔的应用前景. 压电陶瓷的压电性能对晶粒尺寸极为敏感, 其晶粒尺寸效应的研究受到了广泛关注. 本文对目前应用较多的几类钙钛矿型压电陶瓷, 包括钛酸钡、锆钛酸铅、铌酸钾钠、钛酸铋钠陶瓷的压电性能晶粒尺寸效应的研究与进展进行了综述; 总结了这些体系中晶粒尺寸的调控方法, 晶粒尺寸效应的表现规律, 同时回顾了相关物理模型与理论机制. 本文为系统理解压电性能的晶粒尺寸效应提供了指导, 并对压电陶瓷晶粒尺寸效应的未来研究方向做出了展望.
    Piezoelectric ceramics is a versatile functional material that can realize interconversion between electrical energy and mechanical energy. As the electrical properties of piezoelectric ceramics are extremely sensitive to the grain size variation, the investigation of grain size effect has attracted much attention. In this paper, the recent research progress of the grain size effect on perovskite piezoelectric ceramics, including barium titanate (BT), lead zirconate titanate (PZT), potassium sodium niobate (KNN), and sodium bismuth titanate (BNT), is comprehensively reviewed. We especially focus on topics including feasible ways of fabricating piezoelectric ceramics with the desired grain sizes, the influence of the grain size effect on piezoelectric properties, and the corresponding physical mechanisms. This review would be beneficial to understanding the influence of the grain size effect on piezoelectric properties. The review concludes with the prediction of the further investigation on the grain size effect.
      通信作者: 龚文, gongwen@tsinghua-zj.edu.cn ; 王轲, wang-ke@tsinghua.edu.cn
    • 基金项目: 国家自然科学基金优秀青年科学基金(批准号: 51822206)、国家自然科学基金(批准号: 51972005)和科学挑战专题(批准号: TZ2018003)资助的课题
      Corresponding author: Gong Wen, gongwen@tsinghua-zj.edu.cn ; Wang Ke, wang-ke@tsinghua.edu.cn
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 51822206), the National Natural Science Foundation of China (Grant No. 51972005), and the Science Challenge Project, China (Grant No. TZ2018003)
    [1]

    Jaffe B, Cook Jr W R, Jaffe H 1971 Piezoelectric Ceramics (Elsevier)

    [2]

    Röedel J, Li J F 2018 MRS Bull. 43 576Google Scholar

    [3]

    Thong H C, Zhao C, Zhou Z, Wu C F, Liu Y X, Du Z Z, Li J F, Gong W, Wang K 2019 Mater. Today 29 37Google Scholar

    [4]

    Koruza J, Bell A J, Frömling T, Webber K G, Wang K, Rödel J 2018 J. Materiomics 4 13Google Scholar

    [5]

    Wul B 1946 Nature 157 808

    [6]

    Roberts S 1947 Phys. Rev. 71 890Google Scholar

    [7]

    Haertling G H 1999 J. Am. Ceram. Soc. 82 797Google Scholar

    [8]

    Jaffe B, Roth R, Marzullo S 1955 J. Res. Natl. Bur. Stand. 55 239Google Scholar

    [9]

    Rödel J, Webber K G, Dittmer R, Jo W, Kimura M, Damj anovic D 2015 J. Eur. Ceram. Soc. 35 1659Google Scholar

    [10]

    EU-Directive 2002/95/EC, European Commision, (2003), https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3 A32002 L0095

    [11]

    Wu J, Xiao D, Zhu J 2015 Chem. Rev. 115 2559Google Scholar

    [12]

    Zheng T, Wu J, Xiao D, Zhu J 2018 Prog. Mater Sci. 98 552Google Scholar

    [13]

    Zhang Y, Li J F 2019 J. Mater. Chem. C 7 4284Google Scholar

    [14]

    Liu Q, Zhang Y, Gao J, Zhou Z, Wang H, Wang K, Zhang X, Li L, Li J F 2018 Energy. Environ. Sci. 11 3531Google Scholar

    [15]

    Liu Q, Zhang Y, Gao J, Zhou Z, Yang D, Lee K Y, Studer A, Hinterstein M, Wang K, Zhang X 2020 Natl. Sci. Rev. 7 355Google Scholar

    [16]

    Liu X, Tan X 2016 Adv. Mater. 28 574Google Scholar

    [17]

    Lee H J, Ural S O, Chen L, Uchino K, Zhang S J 2012 J. Am. Ceram. Soc. 95 3383Google Scholar

    [18]

    Hao J, Li W, Zhai J, Chen H 2019 Mater. Sci. Eng. R. Rep. 135 1Google Scholar

    [19]

    Jillek W, Yung W 2005 Int. J. Adv. Manuf. Technol. 25 350Google Scholar

    [20]

    Kniekamp H, Heywang W 1954 Z. Angew. Phys 6 385

    [21]

    Martirena H, Burfoot J 1974 J. Phys. C: Solid. State. Phys 7 3182Google Scholar

    [22]

    Kinoshita K, Yamaji A 1976 J. Appl. Phys. 47 371Google Scholar

    [23]

    Arlt G, Hennings D, De With G 1985 J. Appl. Phys. 58 1619Google Scholar

    [24]

    Ghayour H, Abdellahi M 2016 Powder Technol. 292 84Google Scholar

    [25]

    Randall C A, Kim N, Kucera J P, Cao W, Shrout T R 1998 J. Am. Ceram. Soc. 81 677Google Scholar

    [26]

    Pramanik R, Sahukar M K, Mohan Y, Praveenkumar B, Sangawar S R, Arockiarajan A 2019 Ceram. Int. 45 5731Google Scholar

    [27]

    Huan Y, Wang X, Fang J, Li L 2014 J. Eur. Ceram. Soc. 34 1445Google Scholar

    [28]

    Tan Y, Zhang J, Wu Y, Wang C, Koval V, Shi B, Ye H, McKinnon R, Viola G, Yan H 2015 Sci. Rep. 5 9953Google Scholar

    [29]

    Wang J, Zheng P, Yin R, Zheng L, Du J, Zheng L, Deng J, Song K, Qin H 2015 Ceram. Int. 41 14165Google Scholar

    [30]

    Zhang J L, Ji P F, Wu Y Q, Zhao X, Tan Y Q, Wang C L 2014 Appl. Phys. Lett. 104 222909Google Scholar

    [31]

    Men T L, Yao F Z, Zhu Z X, Wang K, Li J F 2016 J. Adv. Dielectr. 6 1650013Google Scholar

    [32]

    Rahaman M N 2003 Ceramic Processing and Sintering (CRC Press)

    [33]

    Malič B, Koruza J, Hreščak J, Bernard J, Wang K, Fisher J G, Benčan A 2015 Materials 8 8117Google Scholar

    [34]

    Watanabe A, Fukui T, Nogi K, Kizaki Y, Noguchi Y, Miyayama M 2006 J. Ceram. Soc. Jpn. 114 97Google Scholar

    [35]

    Hsiang H I, Yen F S 1996 J. Am. Ceram. Soc. 79 1053Google Scholar

    [36]

    Kakimoto K i, Shinkai Y 2011 Jpn. J. Appl. Phys. 50 09NC13Google Scholar

    [37]

    Nath A, Jiten C, Singh K C 2010 Physica. B Condens. Matter. 405 430Google Scholar

    [38]

    郭惠芬, 张兴堂, 刘兵, 李蕴才, 黄亚彬, 杜祖亮 2004 物理化学学报 20 113Google Scholar

    Guo H F, Zhang X T, Liu B, Li Y C, Huang Y B, Du Z L 2004 Acta Physico-chimica Sinica 20 113Google Scholar

    [39]

    Lu S W, Lee B I, Wang Z L, Samuels W D 2000 J. Cryst. Growth 219 269Google Scholar

    [40]

    Tokita K, Sato S 2006 Key Eng. Mater 301 219

    [41]

    Guo L, Luo H, Gao J, Guo L, Yang J 2006 Mater. Lett. 60 3011Google Scholar

    [42]

    Chen D, Jiao X 2000 J. Am. Ceram. Soc. 83 2637Google Scholar

    [43]

    Mazdiyasni K S, Dolloff R, Smith J 1969 J. Am. Ceram. Soc. 52 523Google Scholar

    [44]

    Shiratori Y, Magrez A, Pithan C 2004 Chem. Phys. Lett. 391 288Google Scholar

    [45]

    Pithan C, Shiratori Y, Waser R, Dornseiffer J, Haegel F H 2006 J. Am. Ceram. Soc. 89 2908Google Scholar

    [46]

    Wei X, Xu G, Ren Z, Wang Y, Shen G, Han G 2008 J. Am. Ceram. Soc. 91 315Google Scholar

    [47]

    Viviani M, Lemaitre J, Buscaglia M, Nanni P 2000 J. Eur. Ceram. Soc. 20 315Google Scholar

    [48]

    Wada S, Chikamori H, Noma T, Suzuki T 2000 J. Mater. Sci. 35 4857Google Scholar

    [49]

    Bansal V, Poddar P, Ahmad A, Sastry M 2006 J. Am. Chem. Soc. 128 11958Google Scholar

    [50]

    Nuraje N, Su K, Haboosheh A, Samson J, Manning E P, Yang N l, Matsui H 2006 Adv. Mater. 18 807Google Scholar

    [51]

    Zheng P, Zhang J L, Tan Y Q, Wang C L 2012 Acta Mater. 60 5022Google Scholar

    [52]

    Buscaglia V, Buscaglia M T, Viviani M, Mitoseriu L, Nanni P, Trefiletti V, Piaggio P, Gregora I, Ostapchuk T, Pokorný J, Petzelt J 2006 J. Eur. Ceram. Soc. 26 2889Google Scholar

    [53]

    Liu Y X, Thong H C, Zhao C, Liu Q, Xu X, Wang K, Li J F 2019 J. Mater. Chem. C 7 6914Google Scholar

    [54]

    Wang X, Deng X, Wen H, Li L 2006 Appl. Phys. Lett. 89 162902Google Scholar

    [55]

    Moetakef P, Nemati Z A 2008 Sens. Actuators. A: Phys. 141 463Google Scholar

    [56]

    Wu J, Wang Y 2014 Dalton. Trans. 43 12836Google Scholar

    [57]

    Yang W, Li P, Wu S, Li F, Shen B, Zhai J 2019 Adv. Electron. Mater. 5 1900570Google Scholar

    [58]

    Martirena H, Burfoot J 1974 Ferroelectrics 7 151Google Scholar

    [59]

    Maiwa H 2013 J. Ceram. Soc. Jpn. 121 655Google Scholar

    [60]

    Maiwa H 2014 Ferroelectrics 463 15Google Scholar

    [61]

    Li J F, Wang S, Wakabayashi K, Esashi M, Watanabe R 2000 J. Am. Ceram. Soc. 83 955Google Scholar

    [62]

    Maiwa H 2016 Ferroelectrics 491 71Google Scholar

    [63]

    Takahashi H, Numamoto Y, Tani J, Matsuta K, Qiu J, Tsurekawa S 2005 Jpn. J. Appl. Phys. 45 L30

    [64]

    Sharma P K, Ounaies Z, Varadan V V, Varadan V K 2001 Smart Mater. Struct. 10 878Google Scholar

    [65]

    Bafandeh M R, Gharahkhani R, Abbasi M H, Saidi A, Lee J S, Han H S 2014 J. Electroceram. 33 128Google Scholar

    [66]

    Deng X, Wang X, Wen H, Kang A, Gui Z, Li L 2006 J. Am. Ceram. Soc. 89 1059Google Scholar

    [67]

    Luan W, Gao L, Kawaoka H, Sekino T, Niihara K 2004 Ceram. Int. 30 405Google Scholar

    [68]

    Wu Y J, Li J, Kimura R, Uekawa N, Kakegawa K 2005 J. Am. Ceram. Soc. 88 3327Google Scholar

    [69]

    Shen Z Y, Li J F, Wang K, Xu S, Jiang W, Deng Q 2010 J. Am. Ceram. Soc. 93 1378Google Scholar

    [70]

    Zhen Y, Li J F, Wang K, Yan Y, Yu L 2011 Mater. Sci. Eng. B 176 1110Google Scholar

    [71]

    Li J F, Wang K, Zhang B P, Zhang L M 2006 J. Am. Ceram. Soc. 89 706Google Scholar

    [72]

    M’Peko J C, Francis J S, Raj R 2014 J. Eur. Ceram. Soc. 34 3655Google Scholar

    [73]

    Su X, Jia Y, Han C, Hu Y, Fu Z, Liu K, Yu Y, Yan X, Wang Y 2019 Ceram. Int. 45 5168Google Scholar

    [74]

    Su X, Bai G, Jia Y, Wang Z, Wu W, Yan X, Ai T, Zhao P, Zhou L 2018 J. Eur. Ceram. Soc. 38 3489Google Scholar

    [75]

    Serrazina R, Dean J S, Reaney I M, Pereira L, Vilarinho P M, Senos A M O R 2019 J. Mater. Chem. C 7 14334Google Scholar

    [76]

    Lucuta P G, Constantinescu F, Barb D 1985 J. Am. Ceram. Soc. 68 533Google Scholar

    [77]

    Pookmanee P, Rujijanagul G, Ananta S, Heimann R B, Phanichphant S 2004 J. Eur. Ceram. Soc. 24 517Google Scholar

    [78]

    Du H, Tang F, Luo F, Zhu D, Qu S, Pei Z, Zhou W 2007 Mater. Res. Bull. 42 1594Google Scholar

    [79]

    Stojanovic B 2018 Magnetic, Ferroelectric, and Multiferroic Metal Oxides (Elsevier)

    [80]

    Rubio Marcos F, Marchet P, Merle Méjean T, Fernandez J 2010 Mater. Chem. Phys. 123 91Google Scholar

    [81]

    Popovič A, Bencze L, Koruza J, Malič B 2015 RSC Advances 5 76249Google Scholar

    [82]

    Lin S, Lv T, Jin C, Wang X 2006 Phys. Rev. B 74 134115Google Scholar

    [83]

    Buessem W R, Cross L E, Goswami A K 1966 J. Am. Ceram. Soc. 49 33Google Scholar

    [84]

    Curecheriu L, Buscaglia M T, Buscaglia V, Zhao Z, Mitoseriu L 2010 Appl. Phys. Lett. 97 242909Google Scholar

    [85]

    Deng X, Wang X, Chen L, Wen H, Li L 2006 Appl. Phys. Lett. 89 152901Google Scholar

    [86]

    Hoshina T, Takizawa K, Li J, Kasama T, Kakemoto H, Tsurumi T 2008 Jpn. J. Appl. Phys. 47 7607Google Scholar

    [87]

    Wada S, Takeda K, Muraishi T, Kakemoto H, Tsurumi T, Kimura T 2007 Jpn. J. Appl. Phys. 46 7039Google Scholar

    [88]

    Shen Z Y, Li J F 2010 J. Ceram. Soc. Jpn. 118 940Google Scholar

    [89]

    Aizawa T, Fujii I, Ueno S, Wada S 2018 J. Ceram. Soc. Jpn. 126 311Google Scholar

    [90]

    Karaki T, Yan K, Adachi M 2007 Jpn. J. Appl. Phys. 46 7035Google Scholar

    [91]

    Karaki T, Yan K, Adachi M 2008 Appl. Phys. Express 1 111402Google Scholar

    [92]

    Ma N, Zhang B P, Yang W G, Guo D 2012 J. Eur. Ceram. Soc. 32 1059Google Scholar

    [93]

    Shao S, Zhang J, Zhang Z, Zheng P, Zhao M, Li J, Wang C 2008 J. Phys. D: Appl. Phys. 41 125408Google Scholar

    [94]

    Zhao Z, Buscaglia V, Viviani M, Buscaglia M T, Mitoseriu L, Testino A, Nygren M, Johnsson M, Nanni P 2004 Phys. Rev. B 70 024107Google Scholar

    [95]

    Ghosh D, Sakata A, Carter J, Thomas P A, Han H, Nino J C, Jones J L 2014 Adv. Funct. Mater. 24 884Google Scholar

    [96]

    Arlt G, Sasko P 1980 J. Appl. Phys. 51 4956Google Scholar

    [97]

    Arlt G 1990 J. Mater. Sci. 25 2655Google Scholar

    [98]

    Hoshina T 2013 J. Ceram. Soc. Jpn. 121 156Google Scholar

    [99]

    Tan Y, Zhang J, Wang C, Viola G, Yan H 2014 Physica Status Solidi A 212 433Google Scholar

    [100]

    Jo W, Dittmer R, Acosta M, Zang J, Groh C, Sapper E, Wang K, Rödel J 2012 J. Electroceram. 29 71Google Scholar

    [101]

    Frey M H, Xu Z, Han P, Payne D A 1998 Ferroelectrics 206 337Google Scholar

    [102]

    Polotai A V, Ragulya A V, Randall C A 2003 Ferroelectrics 288 93Google Scholar

    [103]

    Deng X, Wang X, Wen H, Chen L, Chen L, Li L 2006 Appl. Phys. Lett. 88 252905Google Scholar

    [104]

    Karaki T, Yan K, Miyamoto T, Adachi M 2007 Jpn. J. Appl. Phys. 46 L97Google Scholar

    [105]

    Hoshina T, Kigoshi Y, Hatta S, Takeda H, Tsurumi T 2009 Jpn. J. Appl. Phys. 48 09KC01

    [106]

    Ding S H, Song T X, Yang X J, Luo G H 2010 Ferroelectrics 402 55Google Scholar

    [107]

    Curecheriu L, Balmus S B, Buscaglia M T, Buscaglia V, Ianculescu A, Mitoseriu L 2012 J. Am. Ceram. Soc. 95 3912Google Scholar

    [108]

    Guo F Q, Zhang B H, Fan Z X, Peng X, Yang Q, Dong Y X, Chen R R 2016 J. Mater. ScI: Mater. Elec 27 5967Google Scholar

    [109]

    Shi Y, Pu Y, Cui Y, Luo Y 2017 J. Mater. ScI: Mater. Elec 28 13229Google Scholar

    [110]

    Takahashi H, Numamoto Y, Tani J, Tsurekawa S 2006 Jpn. J. Appl. Phys. 45 7405Google Scholar

    [111]

    Takahashi H, Numamoto Y, Tani J, Tsurekawa S 2007 Jpn. J. Appl. Phys. 46 7044Google Scholar

    [112]

    Huan Y, Wang X, Fang J, Li L 2013 J. Am. Ceram. Soc. 96 3369Google Scholar

    [113]

    Mudinepalli V R, Feng L, Lin W C, Murty B S 2015 J. Adv. Ceram. 4 46Google Scholar

    [114]

    Dai B, Hu X, Yin R, Bai W, Wen F, Deng J, Zheng L, Du J, Zheng P, Qin H 2017 J. Mater. ScI: Mater. Elec 28 7928Google Scholar

    [115]

    Dai B, Zheng P, Bai W, Wen F, Li L, Wu W, Ying Z, Zheng L 2018 J. Eur. Ceram. Soc. 38 4212Google Scholar

    [116]

    Li X, Wang J 2016 Smart Mater. Struct. 26 015013Google Scholar

    [117]

    Khanal G P, Kim S, Kim M, Fujii I, Ueno S, Wada S 2018 J. Ceram. Soc. Jpn. 126 536Google Scholar

    [118]

    McNeal M P, Jang S J, Newnham R E 1998 J. Appl. Phys. 83 3288Google Scholar

    [119]

    Hao J, Bai W, Li W, Zhai J 2012 J. Am. Ceram. Soc. 95 1998Google Scholar

    [120]

    Tan Y, Viola G, Koval V, Yu C, Mahajan A, Zhang J, Zhang H, Zhou X, Tarakina N V, Yan H 2019 J. Eur. Ceram. Soc. 39 2064Google Scholar

    [121]

    Sapkota P, Ueno S, Fujii I, Khanal G P, Kim S, Wada S 2019 Jpn. J. Appl. Phys. 58 SLLC05Google Scholar

    [122]

    Liu W, Ren X 2009 Phys. Rev. Lett. 103 257602Google Scholar

    [123]

    Zhao C, Wu H, Li F, Cai Y, Zhang Y, Song D, Wu J, Lyu X, Yin J, Xiao D, Zhu J, Pennycook S J 2018 J. Am. Chem. Soc. 140 15252Google Scholar

    [124]

    Yao Y, Zhou C, Lv D, Wang D, Wu H, Yang Y, Ren X 2012 EPL (Europhysics Letters) 98 27008Google Scholar

    [125]

    Zhou P F, Zhang B P, Zhao L, Zhao X K, Zhu L F, Cheng L Q, Li J F 2013 Appl. Phys. Lett. 103 172904Google Scholar

    [126]

    Zhu L F, Zhang B P, Zhao X K, Zhao L, Zhou P F, Li J F 2012 J. Am. Ceram. Soc. 96 241Google Scholar

    [127]

    Zhao L, Zhang B P, Zhou P F, Zhu L F, Wang N 2016 Ceram. Int. 42 1086Google Scholar

    [128]

    Zhu L F, Zhang B P, Zhao L, Li S, Zhou Y, Shi X C, Wang N 2016 J. Eur. Ceram. Soc. 36 1017Google Scholar

    [129]

    Zhang L, Zhang M, Wang L, Zhou C, Zhang Z, Yao Y, Zhang L, Xue D, Lou X, Ren X 2014 Appl. Phys. Lett. 105 162908Google Scholar

    [130]

    Brajesh K, Tanwar K, Abebe M, Ranjan R 2015 Phys. Rev. B 92 224112Google Scholar

    [131]

    Weston T, Webster A, McNamara V 1969 J. Am. Ceram. Soc. 52 253Google Scholar

    [132]

    Okazaki K, Nagata K 1973 J. Am. Ceram. Soc. 56 82Google Scholar

    [133]

    Kawamura Y, Matsumoto N, Kamataki H, Mukae K 1989 Jpn. J. Appl. Phys. 28 77

    [134]

    Ichinose N, Kimura M 1991 Jpn. J. Appl. Phys. 30 2220Google Scholar

    [135]

    Kim S, Lee G, Shrout T R, Venkataramani S 1991 J. Mater. Sci. 26 4411Google Scholar

    [136]

    Zhang Z, Raj R 1995 J. Am. Ceram. Soc. 78 3363Google Scholar

    [137]

    Roy Chowdhury P, Deshpande S B 1987 J. Mater. Sci. 22 2209Google Scholar

    [138]

    Qiu C, Wang B, Zhang N, Zhang S, Liu J, Walker D, Wang Y, Tian H, Shrout T R, Xu Z 2020 Nature 577 350Google Scholar

    [139]

    Okazaki K, Sakata K 1962 Electrotechn. J. Jpn. 7 13

    [140]

    Yang A, Wang C A, Guo R, Huang Y, Nan C W 2010 Ceram. Int. 36 549Google Scholar

    [141]

    Liu W, Xu J, Lv R, Wang Y, Xu H, Yang J 2014 Ceram. Int. 40 2005Google Scholar

    [142]

    Genenko Y A, Glaum J, Hoffmann M J, Albe K 2015 Mater. Sci. Eng., B 192 52Google Scholar

    [143]

    Eitel R, Shrout T R, Randall C A 2006 J. Appl. Phys. 99 124110Google Scholar

    [144]

    Hoffmann M, Hammer M, Endriss A, Lupascu D 2001 Acta Mater. 49 1301Google Scholar

    [145]

    Damjanovic D, Demartin M 1997 J. Phys.: Condens. Matter 9 4943Google Scholar

    [146]

    Kittel C 1946 Phys. Rev 70 965Google Scholar

    [147]

    Cao W, Randall C A 1996 J. Phys. Chem. Solids 57 1499Google Scholar

    [148]

    Marincel D M, Zhang H, Kumar A, Jesse S, Kalinin S V, Rainforth W, Reaney I M, Randall C A, Trolier-McKinstry S 2014 Adv. Funct. Mater. 24 1409Google Scholar

    [149]

    Wicks S, Anbusathiah V, Nagarajan V 2007 Nanotechnology 18 465502Google Scholar

    [150]

    Schultheiß J, Checchia S, Uršič H, Frömling T, Daniels J, Malič B, Rojac T, Koruza J 2020 J. Eur. Ceram. Soc. 40 3965Google Scholar

    [151]

    Bell A, Moulson A, Cross L 1984 Ferroelectrics 54 147Google Scholar

    [152]

    Zhukov S, Kungl H, Genenko Y A, von Seggern H 2014 J. Appl. Phys. 115 014103Google Scholar

    [153]

    Huey B D, Nath Premnath R, Lee S, Polomoff N A 2012 J. Am. Ceram. Soc. 95 1147Google Scholar

    [154]

    Damjanovic D, Demartin M, Shulman H, Testorf M, Setter N 1996 Sens. Actuators. A: Phys. 53 353Google Scholar

    [155]

    Härdtl K, Rau H 1969 Solid State Commun. 7 41Google Scholar

    [156]

    Babushkin O, Lindbäck T, Luc J C, Leblais J Y 1996 J. Eur. Ceram. Soc. 16 1293Google Scholar

    [157]

    Lal R, Gokhale N, Krishnan R, Ramakrishnan P 1989 J. Mater. Sci. 24 2911Google Scholar

    [158]

    Zhang M H, Liu Y X, Wang K, Koruza J, Schultheiß J 2020 Phys. Rev. Mater. 4 064407Google Scholar

    [159]

    Hreščak J, Dražić G, Deluca M, Arčon I, Kodre A, Dapiaggi M, Rojac T, Malič B, Bencan A 2017 J. Eur. Ceram. Soc. 37 2073Google Scholar

    [160]

    Yang Z, Du H, Qu S, Hou Y, Ma H, Wang J, Wang J, Wei X, Xu Z 2016 J. Mater. Chem. A 4 13778Google Scholar

    [161]

    Koruza J, Rožič B, Cordoyiannis G, Malič B, Kutnjak Z 2015 Appl. Phys. Lett. 106 202905Google Scholar

    [162]

    Kosec M, Bobnar V, Hrovat M, Bernard J, Malic B, Holc J 2004 J. Mater. Res. 19 1849Google Scholar

    [163]

    Wang R, Xie R, Sekiya T, Shimojo Y 2004 Mater. Res. Bull. 39 1709Google Scholar

    [164]

    Acker J, Kungl H, Hoffmann M J 2010 J. Am. Ceram. Soc. 93 1270Google Scholar

    [165]

    Eriksson M, Yan H, Viola G, Ning H, Gruner D, Nygren M, Reece M J, Shen Z 2011 J. Am. Ceram. Soc. 94 3391Google Scholar

    [166]

    Kakimoto K i, Kaneko R, Kagomiya I 2012 Jpn. J. Appl. Phys. 51 09LD06Google Scholar

    [167]

    Haertling G 1967 J. Am. Ceram. Soc. 50 329Google Scholar

    [168]

    Fang J, Wang X, Tian Z, Zhong C, Li L, Zuo R 2010 J. Am. Ceram. Soc. 93 3552Google Scholar

    [169]

    Qin Y, Zhang J, Yao W, Wang C, Zhang S 2015 J. Am. Ceram. Soc. 98 1027Google Scholar

    [170]

    Esin A, Alikin D, Turygin A, Abramov A, Hreščak J, Walker J, Rojac T, Bencan A, Malic B, Kholkin A 2017 J. Appl. Phys. 121 074101Google Scholar

    [171]

    Wang K, Malič B, Wu J 2018 MRS Bull. 43 607Google Scholar

    [172]

    Cen Z, Yu Y, Zhao P, Chen L, Zhu C, Li L, Wang X 2019 J. Mater. Chem. C 7 1379Google Scholar

    [173]

    Li E, Kakemoto H, Hoshina T, Tsurumi T 2008 Jpn. J. Appl. Phys. 47 7702Google Scholar

    [174]

    Hagh N M, Kerman K, Jadidian B, Safari A 2009 J. Eur. Ceram. Soc. 29 2325Google Scholar

    [175]

    Han H S, Koruza J, Patterson E A, Schultheiß J, Erdem E, Jo W, Lee J S, Rödel J 2017 J. Eur. Ceram. Soc. 37 2083Google Scholar

    [176]

    Zhen Y, Li J F 2007 J. Am. Ceram. Soc. 90 3496Google Scholar

    [177]

    Fisher J G, Kang S J L 2009 J. Eur. Ceram. Soc. 29 2581Google Scholar

    [178]

    Thong H C, Xu Z, Zhao C, Lou L Y, Chen S, Zuo S Q, Li J F, Wang K 2019 J. Am. Ceram. Soc. 102 836Google Scholar

    [179]

    Thong H C, Zhao C, Zhu Z X, Chen X, Li J F, Wang K 2019 Acta Mater. 166 551Google Scholar

    [180]

    Pop-Ghe P, Stock N, Quandt E 2019 Sci. Rep. 9 1Google Scholar

    [181]

    Cho C R, Grishin A 2000 J. Appl. Phys. 87 4439Google Scholar

    [182]

    Paterson A R, Nagata H, Tan X, Daniels J E, Hinterstein M, Ranjan R, Groszewicz P B, Jo W, Jones J L 2018 MRS Bull. 43 600Google Scholar

    [183]

    Takenaka T, Nagata H, Hiruma Y 2008 Jpn. J. Appl. Phys. 47 3787Google Scholar

    [184]

    Nagata H, Takenaka T 2001 J. Eur. Ceram. Soc. 21 1299Google Scholar

    [185]

    Yi J Y, Lee J K, Hong K S 2002 J. Am. Ceram. Soc. 85 3004

    [186]

    Naderer M, Kainz T, Schütz D, Reichmann K 2014 J. Eur. Ceram. Soc. 34 663Google Scholar

    [187]

    Qiao X S, Chen X M, Lian H L, Zhou J P, Liu P 2016 J. Eur. Ceram. Soc. 36 3995Google Scholar

    [188]

    Seo I T, Steiner S, Frömling T 2017 J. Eur. Ceram. Soc. 37 1429Google Scholar

    [189]

    Zhang Y R, Li J F, Zhang B P 2008 J. Am. Ceram. Soc. 91 2716Google Scholar

    [190]

    Cernea M, Galassi C, Vasile B S, Capiani C, Berbecaru C, Pintilie I, Pintilie L 2012 J. Eur. Ceram. Soc. 32 2389Google Scholar

    [191]

    Taghaddos E, Charalambous H, Tsakalakos T, Safari A 2019 J. Eur. Ceram. Soc. 39 2882Google Scholar

    [192]

    Bai W, Chen D, Zheng P, Xi J, Zhou Y, Shen B, Zhai J, Ji Z 2017 J. Eur. Ceram. Soc. 37 2591Google Scholar

    [193]

    Si Y, Li Y, Li L, Li H, Zhao Z, Dai Y 2020 J. Am. Ceram. Soc. 103 1765Google Scholar

    [194]

    Veera Gajendra Babu M, Bagyalakshmi B, Pathinettam Padiyan D, Ren Y, Sundarakannan B 2017 Scripta Mater. 141 67Google Scholar

    [195]

    Koruza J, Groszewicz P, Breitzke H, Buntkowsky G, Rojac T, Malič B 2017 Acta Mater. 126 77Google Scholar

    [196]

    Liu X, Xue S, Wang F, Zhai J, Shen B 2019 Acta Mater. 164 12Google Scholar

    [197]

    Li H L, Liu Q, Zhou J J, Wang K, Li J F, Liu H, Fang J Z 2016 J. Eur. Ceram. Soc. 36 2849Google Scholar

    [198]

    Khatua D K, Mehrotra T, Mishra A, Majumdar B, Senyshyn A, Ranjan R 2017 Acta Mater. 134 177Google Scholar

    [199]

    Muthuramalingam M, Ruth D J, Babu M V G, Ponpandian N, Mangalaraj D, Sundarakannan B 2016 Scripta Mater. 112 58Google Scholar

  • 图 1  本综述行文结构与主要内容

    Fig. 1.  Outline of this review.

    图 2  (a) 六种烧结机制的扩散路径; (b) 烧结过程中致密化与晶粒长大示意图, 黑色曲线表示相对密度的变化

    Fig. 2.  (a) Six possible sintering mechanisms; (b) schematic view of the powder evolution at different stages during sintering; the black curve corresponds to the variation of relative density.

    图 3  BT压电陶瓷的晶粒形貌及晶粒尺寸对压电性能的影响 (a) BT陶瓷中不同尺寸(5 nm—100 μm)晶粒的扫描电子显微镜照片[27,30,52,54,63,93-95]; (b) 典型BT陶瓷中εd33[98]; (c) 双向极化应变曲线; (d) 电滞回线; (e) 单向极化应变曲线随晶粒尺寸的变化[99]

    Fig. 3.  The grain size effect on BT ceramics: (a) A wide range of grain size varying from 5 nm to 100 μm can be obtained in BT ceramics[27,30,52,54,63,93-95]; (b) ε and d33[98]; (c) bipolar strain curve; (d) hysteresis loop; (e) unipolar strain loop measured as a function of grain size[99].

    图 4  BT陶瓷中(a)畴尺寸、(b)介电常数ε及(c)压电常数d33随晶粒尺寸的变化趋势; (d)高能X射线衍射图谱显示不同晶粒尺寸的BT陶瓷中平均晶面间距及(002)和(200)衍射峰强度在电场激励下的变化[95]. “nano”, “micro”分别表示纳米级和微米级粒径的BT陶瓷粉体; “MS”, “HP”, “SPS”, “CS”和“TSS”分别表示微波烧结、热压烧结、等离子放电烧结、普通烧结及两步法烧结方法

    Fig. 4.  (a) Ferroelectric domain size, (b) ε, and (c) d33 of BT ceramics summarized as a function of grain size; (d) extrinsic contribution was found maximized when the grain size of BT ceramic is around 2 μm in a high-energy XRD measurement[95]. Note: “nano” and “micro” implies that the raw materials are nano-sized and micro-sized BaTiO3 powders. “MS”, “HP”, “SPS”, “CS”, and “TSS” represents the microwave sintering, hot-pressing, spark plasma sintering, conventional sintering and two-step sintering, respectively.

    图 5  采用不同方法制得的BT陶瓷和带有不同相结构的BT陶瓷中, 晶粒尺寸效应呈现显著的不同 (a) 不同陶瓷粉体粒径和烧结方法制备BT陶瓷中d33随晶粒尺寸的变化趋势[28]; (b) Ba(Ti0.96Sn0.04)O3 (BTS)和(Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 (BCZT)陶瓷中d33${d}_{33}^{{*}}$随晶粒尺寸的变化趋势[119,120]

    Fig. 5.  Grain size effect can be different among BT ceramics with virous phase structure and by different preparation method: (a) Grain size dependence of d33 of BT ceramics prepared by using different sintering method[28]; (b) d33 and $ {d}_{33}^{{*}} $ of Ba(Ti0.96Sn0.04)O3, (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 ceramics with different average grain sizes[119,120].

    图 6  (a) 通过控制烧结温度获得晶粒尺寸不同的PZT陶瓷[141]; (b) d33d31随烧结温度的变化[141]; (c) 晶粒尺寸效应的“空间电荷模型”[132]

    Fig. 6.  (a) Grain size evolution in PZT ceramics as a function of sintering temperature[141]; (b) piezoelectric coefficients of PZT ceramics measured as a function of sintering temperature[141]; (c) illustration of the “space-charge model” [132].

    图 7  (a) PZT陶瓷的d33, d31, dhPr与晶粒尺寸的关系[25]; (b) PZT陶瓷的晶体四方性c/a与晶粒尺寸的关系[25]; (c) 晶粒尺寸为3.9 μm和10.4 μm的PZT陶瓷的压电力显微镜(PFM)图[150]; (d) 在细晶粒陶瓷的晶界上观察到比较强烈的局部矫顽场[150]; (e) 不同晶粒尺寸PZT陶瓷样品经过2000次电循环去老化后测量的电致应变曲线(左), 双极化应变SbipPr与晶粒尺寸的关系(右)[150]

    Fig. 7.  (a) d33, d31, dh, and Pr of PZT ceramics measured as a function of grain size[25]; (b) c/a ratio measured as a function of grain size[25]; (c) PFM amplitude images of PZT samples with average grain sizes of 3.9 μm and 10.4 μm[150]; (d) stronger local coercive voltages can be obtained at the grain boundary in the fine grain[150]; (e) bipolar strain and Pr of PZT ceramics measured as a function of grain size after de-aging[150].

    图 8  (a) KNN-x Sr陶瓷中铁电畴尺寸随着晶粒尺寸的变化; 在总体畴壁密度提升的同时, 导电畴壁的数量也大幅增加[170]; (b) KNN基陶瓷的铁电与压电性能随着晶粒尺寸的变化[171]

    Fig. 8.  (a) Variation of domain size as a function of grain size in KNN-x Sr ceramics; an increased amount of conductive domain wall is observed as the grain size decreases[170]; (b) evolution of ferroelectric and piezoelectric properties as a function of grain size in KNN-based ceramics[171].

    图 9  (a) KNN陶瓷在高温烧结过程中产生液相导致的异常晶粒长大[176]; (b) 通过改变烧结气氛可以抑制陶瓷中的异常晶粒长大[177]; (c) 在KNN基陶瓷预烧粉末中观察到的异常晶粒长大[178]

    Fig. 9.  (a) Abnormal grain growth in sintered KNN ceramics caused by the formation of the liquid phase at high temperature[176]; (b) abnormal grain growth in sintered ceramics can be suppressed by controlling sintering atmosphere[177]; (c) irregular grain growth observed in calcined KNN-based ceramic powder[178].

    图 10  (a) 利用闪速烧结方式制备细晶粒BNT基陶瓷[191]; (b) BNT基陶瓷中晶粒尺寸效应的物理模型[196]; (c) BNT基陶瓷的压电性能随晶粒尺寸的变化[197]

    Fig. 10.  (a) Fine-grained BNT-based ceramics prepared by flash sintering[191]; (b) a qualitative model of the grain size effect in BNT-based ceramics[196]; (c) variation of piezoelectric properties of BNT-based ceramics as a function of grain size[197].

    表 1  不同粉体制备方法与最细粉体粒径

    Table 1.  Ceramic powders prepared by using different approaches.

    分类 制备方法 最细粉体粒径/nm 文献
    气相法 气相合成法 ~100 [34]
    固相法 固相反应合成法 100 [35]
    研磨-离心法 300 [36]
    高能球磨法 16 [37]
    液相法 溶胶-凝胶法 38 [38]
    水热法 < 100 [39,40]
    微波水热法 30 [41]
    溶剂热合成法 20 [42]
    醇盐法 5 [43]
    水解法 100 [44]
    微乳液法 < 10 [45,46]
    低温直接合成法 < 10 [47,48]
    其他方法 生物法 4 [49]
    微模板法 6 [50]
    下载: 导出CSV

    表 2  不同烧结方法与晶粒尺寸

    Table 2.  Grain size variation among BT, PZT, and KNN ceramics prepared by using different sintering techniques.

    烧结方法晶粒尺寸/μm
    BTPZTKNN
    普通烧结0.5—100[51,52]1—10[25]0.5—4[53]
    两步法烧结0.005—8.6[27,54]1.6—6.4[55]1.6—3.8[56,57]
    热压烧结0.3—1.2[23]2—5[58]~0.31[57]
    热等静压烧结0.32—47.3[59,60]2—4[61]~0.34[62]
    微波烧结~3.4[63]~2[64] < 1[65]
    等离子放电烧结0.02—1.2[52,66,67]0.3—0.5[68]0.2—1[69-71]
    闪速烧结0.3—0.4[72]#0.168—1.4 (AC)[73]
    0.269—4 (DC)[74]
    * < 0.5&4[75]
    注: #AC指在交流电场下的闪速烧结, DC指在直流电场下的闪速烧结;
    *晶粒尺寸呈现双峰分布.
    下载: 导出CSV
  • [1]

    Jaffe B, Cook Jr W R, Jaffe H 1971 Piezoelectric Ceramics (Elsevier)

    [2]

    Röedel J, Li J F 2018 MRS Bull. 43 576Google Scholar

    [3]

    Thong H C, Zhao C, Zhou Z, Wu C F, Liu Y X, Du Z Z, Li J F, Gong W, Wang K 2019 Mater. Today 29 37Google Scholar

    [4]

    Koruza J, Bell A J, Frömling T, Webber K G, Wang K, Rödel J 2018 J. Materiomics 4 13Google Scholar

    [5]

    Wul B 1946 Nature 157 808

    [6]

    Roberts S 1947 Phys. Rev. 71 890Google Scholar

    [7]

    Haertling G H 1999 J. Am. Ceram. Soc. 82 797Google Scholar

    [8]

    Jaffe B, Roth R, Marzullo S 1955 J. Res. Natl. Bur. Stand. 55 239Google Scholar

    [9]

    Rödel J, Webber K G, Dittmer R, Jo W, Kimura M, Damj anovic D 2015 J. Eur. Ceram. Soc. 35 1659Google Scholar

    [10]

    EU-Directive 2002/95/EC, European Commision, (2003), https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3 A32002 L0095

    [11]

    Wu J, Xiao D, Zhu J 2015 Chem. Rev. 115 2559Google Scholar

    [12]

    Zheng T, Wu J, Xiao D, Zhu J 2018 Prog. Mater Sci. 98 552Google Scholar

    [13]

    Zhang Y, Li J F 2019 J. Mater. Chem. C 7 4284Google Scholar

    [14]

    Liu Q, Zhang Y, Gao J, Zhou Z, Wang H, Wang K, Zhang X, Li L, Li J F 2018 Energy. Environ. Sci. 11 3531Google Scholar

    [15]

    Liu Q, Zhang Y, Gao J, Zhou Z, Yang D, Lee K Y, Studer A, Hinterstein M, Wang K, Zhang X 2020 Natl. Sci. Rev. 7 355Google Scholar

    [16]

    Liu X, Tan X 2016 Adv. Mater. 28 574Google Scholar

    [17]

    Lee H J, Ural S O, Chen L, Uchino K, Zhang S J 2012 J. Am. Ceram. Soc. 95 3383Google Scholar

    [18]

    Hao J, Li W, Zhai J, Chen H 2019 Mater. Sci. Eng. R. Rep. 135 1Google Scholar

    [19]

    Jillek W, Yung W 2005 Int. J. Adv. Manuf. Technol. 25 350Google Scholar

    [20]

    Kniekamp H, Heywang W 1954 Z. Angew. Phys 6 385

    [21]

    Martirena H, Burfoot J 1974 J. Phys. C: Solid. State. Phys 7 3182Google Scholar

    [22]

    Kinoshita K, Yamaji A 1976 J. Appl. Phys. 47 371Google Scholar

    [23]

    Arlt G, Hennings D, De With G 1985 J. Appl. Phys. 58 1619Google Scholar

    [24]

    Ghayour H, Abdellahi M 2016 Powder Technol. 292 84Google Scholar

    [25]

    Randall C A, Kim N, Kucera J P, Cao W, Shrout T R 1998 J. Am. Ceram. Soc. 81 677Google Scholar

    [26]

    Pramanik R, Sahukar M K, Mohan Y, Praveenkumar B, Sangawar S R, Arockiarajan A 2019 Ceram. Int. 45 5731Google Scholar

    [27]

    Huan Y, Wang X, Fang J, Li L 2014 J. Eur. Ceram. Soc. 34 1445Google Scholar

    [28]

    Tan Y, Zhang J, Wu Y, Wang C, Koval V, Shi B, Ye H, McKinnon R, Viola G, Yan H 2015 Sci. Rep. 5 9953Google Scholar

    [29]

    Wang J, Zheng P, Yin R, Zheng L, Du J, Zheng L, Deng J, Song K, Qin H 2015 Ceram. Int. 41 14165Google Scholar

    [30]

    Zhang J L, Ji P F, Wu Y Q, Zhao X, Tan Y Q, Wang C L 2014 Appl. Phys. Lett. 104 222909Google Scholar

    [31]

    Men T L, Yao F Z, Zhu Z X, Wang K, Li J F 2016 J. Adv. Dielectr. 6 1650013Google Scholar

    [32]

    Rahaman M N 2003 Ceramic Processing and Sintering (CRC Press)

    [33]

    Malič B, Koruza J, Hreščak J, Bernard J, Wang K, Fisher J G, Benčan A 2015 Materials 8 8117Google Scholar

    [34]

    Watanabe A, Fukui T, Nogi K, Kizaki Y, Noguchi Y, Miyayama M 2006 J. Ceram. Soc. Jpn. 114 97Google Scholar

    [35]

    Hsiang H I, Yen F S 1996 J. Am. Ceram. Soc. 79 1053Google Scholar

    [36]

    Kakimoto K i, Shinkai Y 2011 Jpn. J. Appl. Phys. 50 09NC13Google Scholar

    [37]

    Nath A, Jiten C, Singh K C 2010 Physica. B Condens. Matter. 405 430Google Scholar

    [38]

    郭惠芬, 张兴堂, 刘兵, 李蕴才, 黄亚彬, 杜祖亮 2004 物理化学学报 20 113Google Scholar

    Guo H F, Zhang X T, Liu B, Li Y C, Huang Y B, Du Z L 2004 Acta Physico-chimica Sinica 20 113Google Scholar

    [39]

    Lu S W, Lee B I, Wang Z L, Samuels W D 2000 J. Cryst. Growth 219 269Google Scholar

    [40]

    Tokita K, Sato S 2006 Key Eng. Mater 301 219

    [41]

    Guo L, Luo H, Gao J, Guo L, Yang J 2006 Mater. Lett. 60 3011Google Scholar

    [42]

    Chen D, Jiao X 2000 J. Am. Ceram. Soc. 83 2637Google Scholar

    [43]

    Mazdiyasni K S, Dolloff R, Smith J 1969 J. Am. Ceram. Soc. 52 523Google Scholar

    [44]

    Shiratori Y, Magrez A, Pithan C 2004 Chem. Phys. Lett. 391 288Google Scholar

    [45]

    Pithan C, Shiratori Y, Waser R, Dornseiffer J, Haegel F H 2006 J. Am. Ceram. Soc. 89 2908Google Scholar

    [46]

    Wei X, Xu G, Ren Z, Wang Y, Shen G, Han G 2008 J. Am. Ceram. Soc. 91 315Google Scholar

    [47]

    Viviani M, Lemaitre J, Buscaglia M, Nanni P 2000 J. Eur. Ceram. Soc. 20 315Google Scholar

    [48]

    Wada S, Chikamori H, Noma T, Suzuki T 2000 J. Mater. Sci. 35 4857Google Scholar

    [49]

    Bansal V, Poddar P, Ahmad A, Sastry M 2006 J. Am. Chem. Soc. 128 11958Google Scholar

    [50]

    Nuraje N, Su K, Haboosheh A, Samson J, Manning E P, Yang N l, Matsui H 2006 Adv. Mater. 18 807Google Scholar

    [51]

    Zheng P, Zhang J L, Tan Y Q, Wang C L 2012 Acta Mater. 60 5022Google Scholar

    [52]

    Buscaglia V, Buscaglia M T, Viviani M, Mitoseriu L, Nanni P, Trefiletti V, Piaggio P, Gregora I, Ostapchuk T, Pokorný J, Petzelt J 2006 J. Eur. Ceram. Soc. 26 2889Google Scholar

    [53]

    Liu Y X, Thong H C, Zhao C, Liu Q, Xu X, Wang K, Li J F 2019 J. Mater. Chem. C 7 6914Google Scholar

    [54]

    Wang X, Deng X, Wen H, Li L 2006 Appl. Phys. Lett. 89 162902Google Scholar

    [55]

    Moetakef P, Nemati Z A 2008 Sens. Actuators. A: Phys. 141 463Google Scholar

    [56]

    Wu J, Wang Y 2014 Dalton. Trans. 43 12836Google Scholar

    [57]

    Yang W, Li P, Wu S, Li F, Shen B, Zhai J 2019 Adv. Electron. Mater. 5 1900570Google Scholar

    [58]

    Martirena H, Burfoot J 1974 Ferroelectrics 7 151Google Scholar

    [59]

    Maiwa H 2013 J. Ceram. Soc. Jpn. 121 655Google Scholar

    [60]

    Maiwa H 2014 Ferroelectrics 463 15Google Scholar

    [61]

    Li J F, Wang S, Wakabayashi K, Esashi M, Watanabe R 2000 J. Am. Ceram. Soc. 83 955Google Scholar

    [62]

    Maiwa H 2016 Ferroelectrics 491 71Google Scholar

    [63]

    Takahashi H, Numamoto Y, Tani J, Matsuta K, Qiu J, Tsurekawa S 2005 Jpn. J. Appl. Phys. 45 L30

    [64]

    Sharma P K, Ounaies Z, Varadan V V, Varadan V K 2001 Smart Mater. Struct. 10 878Google Scholar

    [65]

    Bafandeh M R, Gharahkhani R, Abbasi M H, Saidi A, Lee J S, Han H S 2014 J. Electroceram. 33 128Google Scholar

    [66]

    Deng X, Wang X, Wen H, Kang A, Gui Z, Li L 2006 J. Am. Ceram. Soc. 89 1059Google Scholar

    [67]

    Luan W, Gao L, Kawaoka H, Sekino T, Niihara K 2004 Ceram. Int. 30 405Google Scholar

    [68]

    Wu Y J, Li J, Kimura R, Uekawa N, Kakegawa K 2005 J. Am. Ceram. Soc. 88 3327Google Scholar

    [69]

    Shen Z Y, Li J F, Wang K, Xu S, Jiang W, Deng Q 2010 J. Am. Ceram. Soc. 93 1378Google Scholar

    [70]

    Zhen Y, Li J F, Wang K, Yan Y, Yu L 2011 Mater. Sci. Eng. B 176 1110Google Scholar

    [71]

    Li J F, Wang K, Zhang B P, Zhang L M 2006 J. Am. Ceram. Soc. 89 706Google Scholar

    [72]

    M’Peko J C, Francis J S, Raj R 2014 J. Eur. Ceram. Soc. 34 3655Google Scholar

    [73]

    Su X, Jia Y, Han C, Hu Y, Fu Z, Liu K, Yu Y, Yan X, Wang Y 2019 Ceram. Int. 45 5168Google Scholar

    [74]

    Su X, Bai G, Jia Y, Wang Z, Wu W, Yan X, Ai T, Zhao P, Zhou L 2018 J. Eur. Ceram. Soc. 38 3489Google Scholar

    [75]

    Serrazina R, Dean J S, Reaney I M, Pereira L, Vilarinho P M, Senos A M O R 2019 J. Mater. Chem. C 7 14334Google Scholar

    [76]

    Lucuta P G, Constantinescu F, Barb D 1985 J. Am. Ceram. Soc. 68 533Google Scholar

    [77]

    Pookmanee P, Rujijanagul G, Ananta S, Heimann R B, Phanichphant S 2004 J. Eur. Ceram. Soc. 24 517Google Scholar

    [78]

    Du H, Tang F, Luo F, Zhu D, Qu S, Pei Z, Zhou W 2007 Mater. Res. Bull. 42 1594Google Scholar

    [79]

    Stojanovic B 2018 Magnetic, Ferroelectric, and Multiferroic Metal Oxides (Elsevier)

    [80]

    Rubio Marcos F, Marchet P, Merle Méjean T, Fernandez J 2010 Mater. Chem. Phys. 123 91Google Scholar

    [81]

    Popovič A, Bencze L, Koruza J, Malič B 2015 RSC Advances 5 76249Google Scholar

    [82]

    Lin S, Lv T, Jin C, Wang X 2006 Phys. Rev. B 74 134115Google Scholar

    [83]

    Buessem W R, Cross L E, Goswami A K 1966 J. Am. Ceram. Soc. 49 33Google Scholar

    [84]

    Curecheriu L, Buscaglia M T, Buscaglia V, Zhao Z, Mitoseriu L 2010 Appl. Phys. Lett. 97 242909Google Scholar

    [85]

    Deng X, Wang X, Chen L, Wen H, Li L 2006 Appl. Phys. Lett. 89 152901Google Scholar

    [86]

    Hoshina T, Takizawa K, Li J, Kasama T, Kakemoto H, Tsurumi T 2008 Jpn. J. Appl. Phys. 47 7607Google Scholar

    [87]

    Wada S, Takeda K, Muraishi T, Kakemoto H, Tsurumi T, Kimura T 2007 Jpn. J. Appl. Phys. 46 7039Google Scholar

    [88]

    Shen Z Y, Li J F 2010 J. Ceram. Soc. Jpn. 118 940Google Scholar

    [89]

    Aizawa T, Fujii I, Ueno S, Wada S 2018 J. Ceram. Soc. Jpn. 126 311Google Scholar

    [90]

    Karaki T, Yan K, Adachi M 2007 Jpn. J. Appl. Phys. 46 7035Google Scholar

    [91]

    Karaki T, Yan K, Adachi M 2008 Appl. Phys. Express 1 111402Google Scholar

    [92]

    Ma N, Zhang B P, Yang W G, Guo D 2012 J. Eur. Ceram. Soc. 32 1059Google Scholar

    [93]

    Shao S, Zhang J, Zhang Z, Zheng P, Zhao M, Li J, Wang C 2008 J. Phys. D: Appl. Phys. 41 125408Google Scholar

    [94]

    Zhao Z, Buscaglia V, Viviani M, Buscaglia M T, Mitoseriu L, Testino A, Nygren M, Johnsson M, Nanni P 2004 Phys. Rev. B 70 024107Google Scholar

    [95]

    Ghosh D, Sakata A, Carter J, Thomas P A, Han H, Nino J C, Jones J L 2014 Adv. Funct. Mater. 24 884Google Scholar

    [96]

    Arlt G, Sasko P 1980 J. Appl. Phys. 51 4956Google Scholar

    [97]

    Arlt G 1990 J. Mater. Sci. 25 2655Google Scholar

    [98]

    Hoshina T 2013 J. Ceram. Soc. Jpn. 121 156Google Scholar

    [99]

    Tan Y, Zhang J, Wang C, Viola G, Yan H 2014 Physica Status Solidi A 212 433Google Scholar

    [100]

    Jo W, Dittmer R, Acosta M, Zang J, Groh C, Sapper E, Wang K, Rödel J 2012 J. Electroceram. 29 71Google Scholar

    [101]

    Frey M H, Xu Z, Han P, Payne D A 1998 Ferroelectrics 206 337Google Scholar

    [102]

    Polotai A V, Ragulya A V, Randall C A 2003 Ferroelectrics 288 93Google Scholar

    [103]

    Deng X, Wang X, Wen H, Chen L, Chen L, Li L 2006 Appl. Phys. Lett. 88 252905Google Scholar

    [104]

    Karaki T, Yan K, Miyamoto T, Adachi M 2007 Jpn. J. Appl. Phys. 46 L97Google Scholar

    [105]

    Hoshina T, Kigoshi Y, Hatta S, Takeda H, Tsurumi T 2009 Jpn. J. Appl. Phys. 48 09KC01

    [106]

    Ding S H, Song T X, Yang X J, Luo G H 2010 Ferroelectrics 402 55Google Scholar

    [107]

    Curecheriu L, Balmus S B, Buscaglia M T, Buscaglia V, Ianculescu A, Mitoseriu L 2012 J. Am. Ceram. Soc. 95 3912Google Scholar

    [108]

    Guo F Q, Zhang B H, Fan Z X, Peng X, Yang Q, Dong Y X, Chen R R 2016 J. Mater. ScI: Mater. Elec 27 5967Google Scholar

    [109]

    Shi Y, Pu Y, Cui Y, Luo Y 2017 J. Mater. ScI: Mater. Elec 28 13229Google Scholar

    [110]

    Takahashi H, Numamoto Y, Tani J, Tsurekawa S 2006 Jpn. J. Appl. Phys. 45 7405Google Scholar

    [111]

    Takahashi H, Numamoto Y, Tani J, Tsurekawa S 2007 Jpn. J. Appl. Phys. 46 7044Google Scholar

    [112]

    Huan Y, Wang X, Fang J, Li L 2013 J. Am. Ceram. Soc. 96 3369Google Scholar

    [113]

    Mudinepalli V R, Feng L, Lin W C, Murty B S 2015 J. Adv. Ceram. 4 46Google Scholar

    [114]

    Dai B, Hu X, Yin R, Bai W, Wen F, Deng J, Zheng L, Du J, Zheng P, Qin H 2017 J. Mater. ScI: Mater. Elec 28 7928Google Scholar

    [115]

    Dai B, Zheng P, Bai W, Wen F, Li L, Wu W, Ying Z, Zheng L 2018 J. Eur. Ceram. Soc. 38 4212Google Scholar

    [116]

    Li X, Wang J 2016 Smart Mater. Struct. 26 015013Google Scholar

    [117]

    Khanal G P, Kim S, Kim M, Fujii I, Ueno S, Wada S 2018 J. Ceram. Soc. Jpn. 126 536Google Scholar

    [118]

    McNeal M P, Jang S J, Newnham R E 1998 J. Appl. Phys. 83 3288Google Scholar

    [119]

    Hao J, Bai W, Li W, Zhai J 2012 J. Am. Ceram. Soc. 95 1998Google Scholar

    [120]

    Tan Y, Viola G, Koval V, Yu C, Mahajan A, Zhang J, Zhang H, Zhou X, Tarakina N V, Yan H 2019 J. Eur. Ceram. Soc. 39 2064Google Scholar

    [121]

    Sapkota P, Ueno S, Fujii I, Khanal G P, Kim S, Wada S 2019 Jpn. J. Appl. Phys. 58 SLLC05Google Scholar

    [122]

    Liu W, Ren X 2009 Phys. Rev. Lett. 103 257602Google Scholar

    [123]

    Zhao C, Wu H, Li F, Cai Y, Zhang Y, Song D, Wu J, Lyu X, Yin J, Xiao D, Zhu J, Pennycook S J 2018 J. Am. Chem. Soc. 140 15252Google Scholar

    [124]

    Yao Y, Zhou C, Lv D, Wang D, Wu H, Yang Y, Ren X 2012 EPL (Europhysics Letters) 98 27008Google Scholar

    [125]

    Zhou P F, Zhang B P, Zhao L, Zhao X K, Zhu L F, Cheng L Q, Li J F 2013 Appl. Phys. Lett. 103 172904Google Scholar

    [126]

    Zhu L F, Zhang B P, Zhao X K, Zhao L, Zhou P F, Li J F 2012 J. Am. Ceram. Soc. 96 241Google Scholar

    [127]

    Zhao L, Zhang B P, Zhou P F, Zhu L F, Wang N 2016 Ceram. Int. 42 1086Google Scholar

    [128]

    Zhu L F, Zhang B P, Zhao L, Li S, Zhou Y, Shi X C, Wang N 2016 J. Eur. Ceram. Soc. 36 1017Google Scholar

    [129]

    Zhang L, Zhang M, Wang L, Zhou C, Zhang Z, Yao Y, Zhang L, Xue D, Lou X, Ren X 2014 Appl. Phys. Lett. 105 162908Google Scholar

    [130]

    Brajesh K, Tanwar K, Abebe M, Ranjan R 2015 Phys. Rev. B 92 224112Google Scholar

    [131]

    Weston T, Webster A, McNamara V 1969 J. Am. Ceram. Soc. 52 253Google Scholar

    [132]

    Okazaki K, Nagata K 1973 J. Am. Ceram. Soc. 56 82Google Scholar

    [133]

    Kawamura Y, Matsumoto N, Kamataki H, Mukae K 1989 Jpn. J. Appl. Phys. 28 77

    [134]

    Ichinose N, Kimura M 1991 Jpn. J. Appl. Phys. 30 2220Google Scholar

    [135]

    Kim S, Lee G, Shrout T R, Venkataramani S 1991 J. Mater. Sci. 26 4411Google Scholar

    [136]

    Zhang Z, Raj R 1995 J. Am. Ceram. Soc. 78 3363Google Scholar

    [137]

    Roy Chowdhury P, Deshpande S B 1987 J. Mater. Sci. 22 2209Google Scholar

    [138]

    Qiu C, Wang B, Zhang N, Zhang S, Liu J, Walker D, Wang Y, Tian H, Shrout T R, Xu Z 2020 Nature 577 350Google Scholar

    [139]

    Okazaki K, Sakata K 1962 Electrotechn. J. Jpn. 7 13

    [140]

    Yang A, Wang C A, Guo R, Huang Y, Nan C W 2010 Ceram. Int. 36 549Google Scholar

    [141]

    Liu W, Xu J, Lv R, Wang Y, Xu H, Yang J 2014 Ceram. Int. 40 2005Google Scholar

    [142]

    Genenko Y A, Glaum J, Hoffmann M J, Albe K 2015 Mater. Sci. Eng., B 192 52Google Scholar

    [143]

    Eitel R, Shrout T R, Randall C A 2006 J. Appl. Phys. 99 124110Google Scholar

    [144]

    Hoffmann M, Hammer M, Endriss A, Lupascu D 2001 Acta Mater. 49 1301Google Scholar

    [145]

    Damjanovic D, Demartin M 1997 J. Phys.: Condens. Matter 9 4943Google Scholar

    [146]

    Kittel C 1946 Phys. Rev 70 965Google Scholar

    [147]

    Cao W, Randall C A 1996 J. Phys. Chem. Solids 57 1499Google Scholar

    [148]

    Marincel D M, Zhang H, Kumar A, Jesse S, Kalinin S V, Rainforth W, Reaney I M, Randall C A, Trolier-McKinstry S 2014 Adv. Funct. Mater. 24 1409Google Scholar

    [149]

    Wicks S, Anbusathiah V, Nagarajan V 2007 Nanotechnology 18 465502Google Scholar

    [150]

    Schultheiß J, Checchia S, Uršič H, Frömling T, Daniels J, Malič B, Rojac T, Koruza J 2020 J. Eur. Ceram. Soc. 40 3965Google Scholar

    [151]

    Bell A, Moulson A, Cross L 1984 Ferroelectrics 54 147Google Scholar

    [152]

    Zhukov S, Kungl H, Genenko Y A, von Seggern H 2014 J. Appl. Phys. 115 014103Google Scholar

    [153]

    Huey B D, Nath Premnath R, Lee S, Polomoff N A 2012 J. Am. Ceram. Soc. 95 1147Google Scholar

    [154]

    Damjanovic D, Demartin M, Shulman H, Testorf M, Setter N 1996 Sens. Actuators. A: Phys. 53 353Google Scholar

    [155]

    Härdtl K, Rau H 1969 Solid State Commun. 7 41Google Scholar

    [156]

    Babushkin O, Lindbäck T, Luc J C, Leblais J Y 1996 J. Eur. Ceram. Soc. 16 1293Google Scholar

    [157]

    Lal R, Gokhale N, Krishnan R, Ramakrishnan P 1989 J. Mater. Sci. 24 2911Google Scholar

    [158]

    Zhang M H, Liu Y X, Wang K, Koruza J, Schultheiß J 2020 Phys. Rev. Mater. 4 064407Google Scholar

    [159]

    Hreščak J, Dražić G, Deluca M, Arčon I, Kodre A, Dapiaggi M, Rojac T, Malič B, Bencan A 2017 J. Eur. Ceram. Soc. 37 2073Google Scholar

    [160]

    Yang Z, Du H, Qu S, Hou Y, Ma H, Wang J, Wang J, Wei X, Xu Z 2016 J. Mater. Chem. A 4 13778Google Scholar

    [161]

    Koruza J, Rožič B, Cordoyiannis G, Malič B, Kutnjak Z 2015 Appl. Phys. Lett. 106 202905Google Scholar

    [162]

    Kosec M, Bobnar V, Hrovat M, Bernard J, Malic B, Holc J 2004 J. Mater. Res. 19 1849Google Scholar

    [163]

    Wang R, Xie R, Sekiya T, Shimojo Y 2004 Mater. Res. Bull. 39 1709Google Scholar

    [164]

    Acker J, Kungl H, Hoffmann M J 2010 J. Am. Ceram. Soc. 93 1270Google Scholar

    [165]

    Eriksson M, Yan H, Viola G, Ning H, Gruner D, Nygren M, Reece M J, Shen Z 2011 J. Am. Ceram. Soc. 94 3391Google Scholar

    [166]

    Kakimoto K i, Kaneko R, Kagomiya I 2012 Jpn. J. Appl. Phys. 51 09LD06Google Scholar

    [167]

    Haertling G 1967 J. Am. Ceram. Soc. 50 329Google Scholar

    [168]

    Fang J, Wang X, Tian Z, Zhong C, Li L, Zuo R 2010 J. Am. Ceram. Soc. 93 3552Google Scholar

    [169]

    Qin Y, Zhang J, Yao W, Wang C, Zhang S 2015 J. Am. Ceram. Soc. 98 1027Google Scholar

    [170]

    Esin A, Alikin D, Turygin A, Abramov A, Hreščak J, Walker J, Rojac T, Bencan A, Malic B, Kholkin A 2017 J. Appl. Phys. 121 074101Google Scholar

    [171]

    Wang K, Malič B, Wu J 2018 MRS Bull. 43 607Google Scholar

    [172]

    Cen Z, Yu Y, Zhao P, Chen L, Zhu C, Li L, Wang X 2019 J. Mater. Chem. C 7 1379Google Scholar

    [173]

    Li E, Kakemoto H, Hoshina T, Tsurumi T 2008 Jpn. J. Appl. Phys. 47 7702Google Scholar

    [174]

    Hagh N M, Kerman K, Jadidian B, Safari A 2009 J. Eur. Ceram. Soc. 29 2325Google Scholar

    [175]

    Han H S, Koruza J, Patterson E A, Schultheiß J, Erdem E, Jo W, Lee J S, Rödel J 2017 J. Eur. Ceram. Soc. 37 2083Google Scholar

    [176]

    Zhen Y, Li J F 2007 J. Am. Ceram. Soc. 90 3496Google Scholar

    [177]

    Fisher J G, Kang S J L 2009 J. Eur. Ceram. Soc. 29 2581Google Scholar

    [178]

    Thong H C, Xu Z, Zhao C, Lou L Y, Chen S, Zuo S Q, Li J F, Wang K 2019 J. Am. Ceram. Soc. 102 836Google Scholar

    [179]

    Thong H C, Zhao C, Zhu Z X, Chen X, Li J F, Wang K 2019 Acta Mater. 166 551Google Scholar

    [180]

    Pop-Ghe P, Stock N, Quandt E 2019 Sci. Rep. 9 1Google Scholar

    [181]

    Cho C R, Grishin A 2000 J. Appl. Phys. 87 4439Google Scholar

    [182]

    Paterson A R, Nagata H, Tan X, Daniels J E, Hinterstein M, Ranjan R, Groszewicz P B, Jo W, Jones J L 2018 MRS Bull. 43 600Google Scholar

    [183]

    Takenaka T, Nagata H, Hiruma Y 2008 Jpn. J. Appl. Phys. 47 3787Google Scholar

    [184]

    Nagata H, Takenaka T 2001 J. Eur. Ceram. Soc. 21 1299Google Scholar

    [185]

    Yi J Y, Lee J K, Hong K S 2002 J. Am. Ceram. Soc. 85 3004

    [186]

    Naderer M, Kainz T, Schütz D, Reichmann K 2014 J. Eur. Ceram. Soc. 34 663Google Scholar

    [187]

    Qiao X S, Chen X M, Lian H L, Zhou J P, Liu P 2016 J. Eur. Ceram. Soc. 36 3995Google Scholar

    [188]

    Seo I T, Steiner S, Frömling T 2017 J. Eur. Ceram. Soc. 37 1429Google Scholar

    [189]

    Zhang Y R, Li J F, Zhang B P 2008 J. Am. Ceram. Soc. 91 2716Google Scholar

    [190]

    Cernea M, Galassi C, Vasile B S, Capiani C, Berbecaru C, Pintilie I, Pintilie L 2012 J. Eur. Ceram. Soc. 32 2389Google Scholar

    [191]

    Taghaddos E, Charalambous H, Tsakalakos T, Safari A 2019 J. Eur. Ceram. Soc. 39 2882Google Scholar

    [192]

    Bai W, Chen D, Zheng P, Xi J, Zhou Y, Shen B, Zhai J, Ji Z 2017 J. Eur. Ceram. Soc. 37 2591Google Scholar

    [193]

    Si Y, Li Y, Li L, Li H, Zhao Z, Dai Y 2020 J. Am. Ceram. Soc. 103 1765Google Scholar

    [194]

    Veera Gajendra Babu M, Bagyalakshmi B, Pathinettam Padiyan D, Ren Y, Sundarakannan B 2017 Scripta Mater. 141 67Google Scholar

    [195]

    Koruza J, Groszewicz P, Breitzke H, Buntkowsky G, Rojac T, Malič B 2017 Acta Mater. 126 77Google Scholar

    [196]

    Liu X, Xue S, Wang F, Zhai J, Shen B 2019 Acta Mater. 164 12Google Scholar

    [197]

    Li H L, Liu Q, Zhou J J, Wang K, Li J F, Liu H, Fang J Z 2016 J. Eur. Ceram. Soc. 36 2849Google Scholar

    [198]

    Khatua D K, Mehrotra T, Mishra A, Majumdar B, Senyshyn A, Ranjan R 2017 Acta Mater. 134 177Google Scholar

    [199]

    Muthuramalingam M, Ruth D J, Babu M V G, Ponpandian N, Mangalaraj D, Sundarakannan B 2016 Scripta Mater. 112 58Google Scholar

  • [1] 杨静, 冯少蓉, 张涛, 牛旭平, 王荣, 李敏, 于润升, 曹兴忠, 王宝义. B位空位补偿型钐掺杂PZT(54/46)陶瓷中的缺陷分析及其对压电性能的影响. 物理学报, 2024, 73(7): 077701. doi: 10.7498/aps.73.20231872
    [2] 徐泽, 娄路遥, 赵纯林, 汤浩正, 刘亦轩, 李昭, 齐晓梅, 张波萍, 李敬锋, 龚文, 王轲. Mn掺杂对KNbO3和(K0.5Na0.5)NbO3无铅钙钛矿陶瓷铁电压电性能的影响. 物理学报, 2020, 69(12): 127705. doi: 10.7498/aps.69.20200277
    [3] 张松然, 何代华, 涂华垚, 孙艳, 康亭亭, 戴宁, 褚君浩, 俞国林. HgCdTe薄膜的输运特性及其应力调控. 物理学报, 2020, 69(5): 057301. doi: 10.7498/aps.69.20191330
    [4] 郑隆立, 齐世超, 王春明, 石磊. 高居里温度铋层状结构钛钽酸铋(Bi3TiTaO9)的压电、介电和铁电特性. 物理学报, 2019, 68(14): 147701. doi: 10.7498/aps.68.20190222
    [5] 丁琨, 武雪飞, 窦秀明, 孙宝权. 电驱动金刚石对顶砧低温连续加压装置. 物理学报, 2016, 65(3): 037701. doi: 10.7498/aps.65.037701
    [6] 侯佳佳, 赵刚, 谭巍, 邱晓东, 贾梦源, 马维光, 张雷, 董磊, 冯晓霞, 尹王保, 肖连团, 贾锁堂. 基于压电陶瓷与光纤电光调制器双通道伺服反馈的激光相位锁定实验研究. 物理学报, 2016, 65(23): 234204. doi: 10.7498/aps.65.234204
    [7] 武丽明, 张晓青. 交联聚丙烯压电驻极体的压电性能及振动能量采集研究. 物理学报, 2015, 64(17): 177701. doi: 10.7498/aps.64.177701
    [8] 张添乐, 黄曦, 郑凯, 张欣梧, 王宇杰, 武丽明, 张晓青, 郑洁, 朱彪. 极化电压对聚丙烯压电驻极体膜压电性能的影响. 物理学报, 2014, 63(15): 157703. doi: 10.7498/aps.63.157703
    [9] 凌进中, 黄元申, 王中飞, 王琦, 张大伟, 庄松林. 可调谐型金属线栅偏振器的特性研究. 物理学报, 2013, 62(14): 144214. doi: 10.7498/aps.62.144214
    [10] 朱敏昊, 吴学健, 尉昊赟, 张丽琼, 张继涛, 李岩. 基于飞秒光频梳的压电陶瓷闭环位移控制系统. 物理学报, 2013, 62(7): 070702. doi: 10.7498/aps.62.070702
    [11] 王宁, 董刚, 杨银堂, 陈斌, 王凤娟, 张岩. 考虑晶粒尺寸效应的超薄(1050 nm) Cu电阻率模型研究. 物理学报, 2012, 61(1): 016802. doi: 10.7498/aps.61.016802
    [12] 丁南, 唐新桂, 匡淑娟, 伍君博, 刘秋香, 何琴玉. 锰掺杂对Ba(Zr, Ti)O3陶瓷压电与介电性能的影响. 物理学报, 2010, 59(9): 6613-6619. doi: 10.7498/aps.59.6613
    [13] 毛朝梁, 董显林, 王根水, 姚春华, 曹菲, 曹盛, 杨丽慧, 王永令. 晶粒尺寸对Ba0.70Sr0.30TiO3陶瓷介电性能的影响规律及机理研究. 物理学报, 2009, 58(8): 5784-5789. doi: 10.7498/aps.58.5784
    [14] 孙琳, 褚君浩, 杨平雄, 冯楚德. Sr位Nd掺杂对SrBi2Nb2O9性能的影响及机理研究. 物理学报, 2009, 58(8): 5790-5797. doi: 10.7498/aps.58.5790
    [15] 曾 涛, 董显林, 毛朝梁, 梁瑞虹, 杨 洪. 孔隙率及晶粒尺寸对多孔PZT陶瓷介电和压电性能的影响及机理研究. 物理学报, 2006, 55(6): 3073-3079. doi: 10.7498/aps.55.3073
    [16] 余柏林, 祁 琼, 唐新峰, 张清杰. 晶粒尺寸对CoSb3化合物热电性能的影响. 物理学报, 2005, 54(12): 5763-5768. doi: 10.7498/aps.54.5763
    [17] 张丽娜, 赵苏串, 郑嘹赢, 李国荣, 殷庆瑞. 复合层状Bi7Ti4NbO21铁电陶瓷的结构与介电和压电性能研究. 物理学报, 2005, 54(5): 2346-2351. doi: 10.7498/aps.54.2346
    [18] 刘卫国, 孔令兵, 张良莹, 姚熹. 多晶铁电薄膜的相变——应力和晶粒尺寸效应. 物理学报, 1996, 45(2): 318-323. doi: 10.7498/aps.45.318
    [19] 尹鑫, 吕孟凯, 李福奇. NH4IO3晶体的压电性能. 物理学报, 1989, 38(1): 124-127. doi: 10.7498/aps.38.124
    [20] 黄肇明, 庄培其, 姜祖涛, 于桂芳. ADP晶体压电性能的动态测量. 物理学报, 1966, 22(8): 911-918. doi: 10.7498/aps.22.911
计量
  • 文章访问数:  23716
  • PDF下载量:  1126
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-07
  • 修回日期:  2020-07-29
  • 上网日期:  2020-10-30
  • 刊出日期:  2020-11-05

/

返回文章
返回