搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

石墨烯基复合热界面材料导热性能研究进展

安盟 孙旭辉 陈东升 杨诺

引用本文:
Citation:

石墨烯基复合热界面材料导热性能研究进展

安盟, 孙旭辉, 陈东升, 杨诺

Research progress of thermal transport in graphene-based thermal interfacial composite materials

An Meng, Sun Xu-Hui, Chen Dong-Sheng, Yang Nuo
PDF
HTML
导出引用
  • 随着微纳电子器件热功率密度的迅速增长, 控制其温度已成为电子信息产业发展和应用的迫切需求. 研发高性能热界面材料是热管理关键问题之一. 由于高导热特性,石墨烯基复合热界面材料成为研究热点. 从原子尺度深入理解复合体系中声子输运机理, 有助于提升复合体系导热性能. 本文从石墨烯内热阻和和复合体系界面热阻两方面介绍和讨论石墨烯复合体系导热的研究进展、导热机制以及调控方式. 最后对该方向研究成果和发展趋势进行总结和展望.
    With the rapid increase of the thermal power density of microelectronic devices and circuits, controlling its temperature has become an urgent need for the development and application of the electronic industry. By virtue of the ultrahigh thermal conductivity of graphene, developing high-performance graphene-based composite thermal interface materials has attracted much research attention and become one of hot research topics. The understanding of phonon transport mechanism in graphene-based composites at atomic scale can be helpful to enhance the heat conductive capability of composites systems. In this review, focused on graphene-based thermal interfaces materials, the heat conduction mechanism and the regulating strategy are introduced on both the internal thermal resistance and interfacial thermal resistance. Finally, the reseach progress and opportunities for future studies are also summarized.
      通信作者: 安盟, anmeng@sust.edu.cn ; 杨诺, nuo@hust.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 52006130)和陕西省自然科学基金基础研究项目(批准号: 2020JQ-692)资助的课题.
      Corresponding author: An Meng, anmeng@sust.edu.cn ; Yang Nuo, nuo@hust.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 52006130), and the Fundamental Research Funds for Shaanxi Province (Grant No. 2020JQ-692) .
    [1]

    孙蓉 2019 集成技术 8 1Google Scholar

    Sun R 2019 J. Ind. Inf. Integration 8 1Google Scholar

    [2]

    Yu W, Liu C, Qiu L, Zhang P, Ma W, Yue Y, Xie H, Larkin L S 2018 Eng. Sci. 2 1

    [3]

    Liu C, Chen M, Yu W, He Y 2018 ES Energy Environ. 2 31

    [4]

    Shahil K M F, Balandin A A 2012 Solid State Commun. 152 1331Google Scholar

    [5]

    Huang C, Qian X, Yang R 2018 Mater. Sci. Eng. R Rep. 132 1Google Scholar

    [6]

    Xu Y, Wang X, Zhou J, Song B, Jiang Z, Lee E M Y, Huberman S, Gleason K K, Chen G 2018 Sci. Adv. 4 eaar3031Google Scholar

    [7]

    Xi Q, Zhong J, He J, Xu X, Nakayama T, Wang Y, Liu J, Zhou J, Li B 2020 Chin. Phys. Lett. 37 104401Google Scholar

    [8]

    Yu X, Ma D, Deng C, Wan X, An M, Meng H, Li X, Huang X, Yang N 2021 Chin. Phy. Lett. 38 014401Google Scholar

    [9]

    Chang Z, Yuan K, Sun Z, Zhang X, Gao Y, Gong X, Tang D 2021 Chin. Phys. B 30 034401Google Scholar

    [10]

    Ma D, Li X, Zhang L 2020 Chin. Phys. B 29 126502Google Scholar

    [11]

    吴祥水, 汤雯婷, 徐象繁 2020 物理学报 69 196602Google Scholar

    Wu X S, Tang W T, Xu X F 2020 Acta Phys. Sin. 69 196602Google Scholar

    [12]

    Balandin A A, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau C N 2008 Nano Lett. 8 902Google Scholar

    [13]

    Xu X, Pereira L F, Wang Y, Wu J, Zhang K, Zhao X, Bae S, Tinh Bui C, Xie R, Thong J T, Hong B H, Loh K P, Donadio D, Li B, Ozyilmaz B 2014 Nat. Commun. 5 3689Google Scholar

    [14]

    Li P, Liu Y, Shi S, Xu Z, Ma W, Wang Z, Liu S, Gao C 2020 Adv. Funct. Mater. 30 2006584Google Scholar

    [15]

    Gao J, Xie D, Wang X, Zhang X, Yue Y 2020 Appl. Phys. Lett. 117 251901Google Scholar

    [16]

    Xu X, Zhou J, Chen J 2020 Adv. Funct. Mater. 30 1904704Google Scholar

    [17]

    Xu X, Chen J, Zhou J, Li B 2018 Adv. Mater. 30 e1705544Google Scholar

    [18]

    Lewis J S, Perrier T, Barani Z, Kargar F, Balandin A A 2021 Nanotechnology 32 142003Google Scholar

    [19]

    Yan Q, Alam F E, Gao J, Dai W, Tan X, Lv L, Wang J, Zhang H, Chen D, Nishimura K, Wang L, Yu J, Lu J, Sun R, Xiang R, Maruyama S, Zhang H, Wu S, Jiang N, Lin CT 2021 Adv. Funct. Mater. 31 2104062Google Scholar

    [20]

    Huang X, Zhi C, Lin Y, Bao H, Wu G, Jiang P, Mai Y-W 2020 Mat. Sci. Eng. R 142 100577Google Scholar

    [21]

    An M, Wang H, Yuan Y, Chen D, Ma W, Sharshir S W, Zheng Z, Zhao Y, Zhang X 2022 Surf. Interfaces 28 101690Google Scholar

    [22]

    Xu Y, Wang X, Hao Q 2021 Compos. Commun. 24 100617Google Scholar

    [23]

    Zhou Y, Wu S, Long Y, Zhu P, Wu F, Liu F, Murugadoss V, Winchester W, Nautiyal A, Wang Z, Guo Z 2020 ES Mater. Manuf. 7 4

    [24]

    Deng C, Huang Y, An M, Yang N 2021 Mater. Today Phys. 16 100305Google Scholar

    [25]

    潘东楷, 宗志成, 杨诺 2022 物理学报 71 086302Google Scholar

    Pan D K, Zong Z C, Yang N 2022 Acta Phys. Sin. 71 086302Google Scholar

    [26]

    An M, Song Q, Yu X, Meng H, Ma D, Li R, Jin Z, Huang B, Yang N 2017 Nano Lett. 17 5805Google Scholar

    [27]

    Vallabhaneni A K, Singh D, Bao H, Murthy J, Ruan X 2016 Phys. Rev. B 93 125432Google Scholar

    [28]

    Feng T, Yao W, Wang Z, Shi J, Li C, Cao B, Ruan X 2017 Phys. Rev. B 95 195202Google Scholar

    [29]

    Sullivan S, Vallabhaneni A, Kholmanov I, Ruan X, Murthy J, Shi L 2017 Nano lett. 17 2049Google Scholar

    [30]

    Feng T, Yao W, Wang Z, Shi J, Li C, Cao B, Ruan X 2017 Phys. Rev. B 95 195202

    [31]

    Feng T, Zhong Y, Shi J, Ruan X 2019 Phys. Rev. B 99 045301Google Scholar

    [32]

    Chen J, Xu X, Zhou J, Li B 2022 Rev. Mod. Phys. 94 025002Google Scholar

    [33]

    Huang Y, Feng W, Yu X, Deng C, Yang N 2020 Chin. Phys. B 29 126303Google Scholar

    [34]

    Giri A, Hopkins P E 2020 Adv. Funct. Mater. 30 1903857Google Scholar

    [35]

    Lin S, Buehler M J 2013 Nanotechnology 24 165702Google Scholar

    [36]

    Wang M, Galpaya D, Lai Z B, Xu Y, Yan C 2014 Int. J. Smart Nano Mat. 5 123Google Scholar

    [37]

    Zhang L, Liu L 2017 ACS Appl. Mater. Interfaces 9 28949Google Scholar

    [38]

    Wang M, Hu N, Zhou L, Yan C 2015 Carbon 85 414Google Scholar

    [39]

    Wang Y, Zhan H F, Xiang Y, Yang C, Wang C M, Zhang Y Y 2015 J. Phys. Chem. C 119 12731Google Scholar

    [40]

    Liu C, Yu W, Chen C, Xie H, Cao B 2020 Inter. J. Heat Mass Trans. 163 120393Google Scholar

    [41]

    Wei X, Zhang T, Luo T 2017 ACS Energy Lett. 2 2283Google Scholar

    [42]

    Sun F, Zhang T, Jobbins M M, Guo Z, Zhang X, Zheng Z, Tang D, Ptasinska S, Luo T 2014 Adv. Mater. 26 6093Google Scholar

    [43]

    Qiu L, Guo P, Kong Q, Tan C W, Liang K, Wei J, Tey J N, Feng Y, Zhang X, Tay B K 2019 Carbon 145 725Google Scholar

    [44]

    Zhang Y, Ma D, Zang Y, Wang X, Yang N 2018 Front. Energy Res. 6 48Google Scholar

    [45]

    Xiong Y, Yu X, Huang Y, Yang J, Li L, Yang N, Xu D 2019 Mater. Today Phys. 11 100139Google Scholar

    [46]

    Ma D, Zhang G, Zhang L 2020 J. Phys. DAppl. Phys. 53 434001Google Scholar

    [47]

    Hao Q, Garg J 2021 ES Mater. Manuf. 14 36

    [48]

    Wang S, Xu D, Gurunathan R, Snyder G J, Hao Q 2020 J. Mater. 6 248

    [49]

    Xu D, Hanus R, Xiao Y, Wang S, Snyder G J, Hao Q 2018 Mater. Today Phys. 6 53Google Scholar

    [50]

    Ma D, Zhao Y, Zhang L 2021 J. Appl. Phys. 129 175302Google Scholar

    [51]

    Xiong G, Wang J-S, Ma D, Zhang L 2020 EPL 128 54007Google Scholar

    [52]

    Zhou Y, Zhang X, Hu M 2016 Nanoscale 8 1994Google Scholar

    [53]

    Rastgarkafshgarkolaei R, Zhang J, Polanco C A, Le N Q, Ghosh A W, Norris P M 2019 Nanoscale 11 6254Google Scholar

    [54]

    Yang L, Wan X, Ma D, Jiang Y, Yang N 2021 Phys. Rev. B 103 155305Google Scholar

    [55]

    Wan X, Feng W, Wang Y, Wang H, Zhang X, Deng C, Yang N 2019 Nano Lett. 19 3387Google Scholar

    [56]

    Wan X, Ma D, Pan D, Yang L, Yang N 2021 Mater. Today Phys. 20 100445Google Scholar

    [57]

    Ju S, Shiga T, Feng L, Hou Z, Tsuda K, Shiomi J 2017 Phys. Rev. X 7 021024

    [58]

    Roy Chowdhury P, Reynolds C, Garrett A, Feng T, Adiga S P, Ruan X 2020 Nano Energy 69 104428Google Scholar

    [59]

    Shanker A, Li C, Kim G H, Gidley D, Pipe K P, Kim J 2017 Sci. Adv. 3 e1700342Google Scholar

    [60]

    Kim G-H, Lee D, Shanker A, Shao L, Kwon M S, Gidley D, Kim J, Pipe K P 2015 Nat. Mater. 14 295Google Scholar

    [61]

    Zhang L, Liu L 2019 Nanoscale 11 3656Google Scholar

    [62]

    Luo T, Lloyd J R 2012 Adv. Funct. Mater. 22 2495Google Scholar

    [63]

    Losego M D, Grady M E, Sottos N R, Cahill D G, Braun P V 2012 Nat. Mater. 11 502Google Scholar

    [64]

    Mehra N, Mu L, Ji T, Yang X, Kong J, Gu J, Zhu J 2018 Appl. Mater. Today 12 92Google Scholar

    [65]

    Han H, Mérabia S, Müller-Plathe F 2017 J. Phys. Chem. Lett. 8 1946Google Scholar

    [66]

    Xiong Y, W H, Gao J, Chen W, Zhang J, Yue Y 2019 Acta Phys. Chim. Sin. 35 1150Google Scholar

    [67]

    Shen X, Wang Z, Wu Y, Liu X, He Y B, Kim J K 2016 Nano Lett. 16 3585Google Scholar

    [68]

    Renteria J, Legedza S, Salgado R, Balandin M, Ramirez S, Saadah M, Kargar F, Balandin A 2015 Mater. Design 88 214Google Scholar

    [69]

    Wu X, Luo T 2014 J. Appl. Phys. 115 014901Google Scholar

    [70]

    Mann D, Pop E, Cao J, Wang Q, Goodson K 2006 J. Phys. Chem. B 110 1502Google Scholar

    [71]

    Maassen J, Lundstrom M 2016 J. Appl. Phys. 119 095102Google Scholar

    [72]

    Lu Z, Shi J, Ruan X 2019 J. Appl. Phys. 125 085107Google Scholar

    [73]

    Zhong J, Xi Q, Wang Z, Nakayama T, Li X, Liu J, Zhou J 2021 J. App. Phys. 129 195102Google Scholar

    [74]

    Guo Y, Zhang Z, Bescond M, Xiong S, Nomura M, Volz S 2021 Phys. Rev. B 103 174306Google Scholar

    [75]

    Cheng Z, Li R, Yan X, Jernigan G, Shi J, Liao M E, Hines N J, Gadre C A, Idrobo J C, Lee E, Hobart K D, Goorsky M S, Pan X, Luo T, Graham S 2021 Nat. Commun. 12 6901Google Scholar

    [76]

    Mortazavi B, Podryabinkin E V, Roche S, Rabczuk T, Zhuang X, Shapeev A V 2020 Mater. Horiz. 7 2359Google Scholar

  • 图 1  高功率密度集成电路散热示意图和热界面示意图

    Fig. 1.  The schematic diagram of high-power integrated chip for heat dissipation.

    图 2  (a) 石墨烯基复合体系中石墨烯面内振动(黑色箭头)和面外振动(红色箭头); (b) 复合体系中石墨烯内非平衡声子群温度; (c) 复合体系中界面石墨烯的面内振动(黑色箭头)和面外振动(红色箭头); (d) 界面石墨烯的非平衡声子温度

    Fig. 2.  (a), (c) The schematic diagram of two types of graphene-based composites where in-plane (out-of-plane) phonon group is denoted as black arrow (red arrow); (b), (d) the temperature distribution of in-plane phonon group, out-of-plane phonon group in graphene and polymer.

    图 3  (a) 面内异质结构和(c)范德瓦耳斯界面原子模型; (b) 面内异质界面和(d)范德瓦耳斯界面在沿热流方向的温度分布, 其中左边系统声子群A和B均对系统导热有贡献且存在非平衡现象, 右边系统仅有一种声子群

    Fig. 3.  (a) The atomic structure models of in-plane heterointerface and (c) van der Waals heterointerfaces;the temperature distribution of phonon group A(b), TA, left, phonon group B(d), TB, left in the left region and phonon group Tright in right region.

  • [1]

    孙蓉 2019 集成技术 8 1Google Scholar

    Sun R 2019 J. Ind. Inf. Integration 8 1Google Scholar

    [2]

    Yu W, Liu C, Qiu L, Zhang P, Ma W, Yue Y, Xie H, Larkin L S 2018 Eng. Sci. 2 1

    [3]

    Liu C, Chen M, Yu W, He Y 2018 ES Energy Environ. 2 31

    [4]

    Shahil K M F, Balandin A A 2012 Solid State Commun. 152 1331Google Scholar

    [5]

    Huang C, Qian X, Yang R 2018 Mater. Sci. Eng. R Rep. 132 1Google Scholar

    [6]

    Xu Y, Wang X, Zhou J, Song B, Jiang Z, Lee E M Y, Huberman S, Gleason K K, Chen G 2018 Sci. Adv. 4 eaar3031Google Scholar

    [7]

    Xi Q, Zhong J, He J, Xu X, Nakayama T, Wang Y, Liu J, Zhou J, Li B 2020 Chin. Phys. Lett. 37 104401Google Scholar

    [8]

    Yu X, Ma D, Deng C, Wan X, An M, Meng H, Li X, Huang X, Yang N 2021 Chin. Phy. Lett. 38 014401Google Scholar

    [9]

    Chang Z, Yuan K, Sun Z, Zhang X, Gao Y, Gong X, Tang D 2021 Chin. Phys. B 30 034401Google Scholar

    [10]

    Ma D, Li X, Zhang L 2020 Chin. Phys. B 29 126502Google Scholar

    [11]

    吴祥水, 汤雯婷, 徐象繁 2020 物理学报 69 196602Google Scholar

    Wu X S, Tang W T, Xu X F 2020 Acta Phys. Sin. 69 196602Google Scholar

    [12]

    Balandin A A, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau C N 2008 Nano Lett. 8 902Google Scholar

    [13]

    Xu X, Pereira L F, Wang Y, Wu J, Zhang K, Zhao X, Bae S, Tinh Bui C, Xie R, Thong J T, Hong B H, Loh K P, Donadio D, Li B, Ozyilmaz B 2014 Nat. Commun. 5 3689Google Scholar

    [14]

    Li P, Liu Y, Shi S, Xu Z, Ma W, Wang Z, Liu S, Gao C 2020 Adv. Funct. Mater. 30 2006584Google Scholar

    [15]

    Gao J, Xie D, Wang X, Zhang X, Yue Y 2020 Appl. Phys. Lett. 117 251901Google Scholar

    [16]

    Xu X, Zhou J, Chen J 2020 Adv. Funct. Mater. 30 1904704Google Scholar

    [17]

    Xu X, Chen J, Zhou J, Li B 2018 Adv. Mater. 30 e1705544Google Scholar

    [18]

    Lewis J S, Perrier T, Barani Z, Kargar F, Balandin A A 2021 Nanotechnology 32 142003Google Scholar

    [19]

    Yan Q, Alam F E, Gao J, Dai W, Tan X, Lv L, Wang J, Zhang H, Chen D, Nishimura K, Wang L, Yu J, Lu J, Sun R, Xiang R, Maruyama S, Zhang H, Wu S, Jiang N, Lin CT 2021 Adv. Funct. Mater. 31 2104062Google Scholar

    [20]

    Huang X, Zhi C, Lin Y, Bao H, Wu G, Jiang P, Mai Y-W 2020 Mat. Sci. Eng. R 142 100577Google Scholar

    [21]

    An M, Wang H, Yuan Y, Chen D, Ma W, Sharshir S W, Zheng Z, Zhao Y, Zhang X 2022 Surf. Interfaces 28 101690Google Scholar

    [22]

    Xu Y, Wang X, Hao Q 2021 Compos. Commun. 24 100617Google Scholar

    [23]

    Zhou Y, Wu S, Long Y, Zhu P, Wu F, Liu F, Murugadoss V, Winchester W, Nautiyal A, Wang Z, Guo Z 2020 ES Mater. Manuf. 7 4

    [24]

    Deng C, Huang Y, An M, Yang N 2021 Mater. Today Phys. 16 100305Google Scholar

    [25]

    潘东楷, 宗志成, 杨诺 2022 物理学报 71 086302Google Scholar

    Pan D K, Zong Z C, Yang N 2022 Acta Phys. Sin. 71 086302Google Scholar

    [26]

    An M, Song Q, Yu X, Meng H, Ma D, Li R, Jin Z, Huang B, Yang N 2017 Nano Lett. 17 5805Google Scholar

    [27]

    Vallabhaneni A K, Singh D, Bao H, Murthy J, Ruan X 2016 Phys. Rev. B 93 125432Google Scholar

    [28]

    Feng T, Yao W, Wang Z, Shi J, Li C, Cao B, Ruan X 2017 Phys. Rev. B 95 195202Google Scholar

    [29]

    Sullivan S, Vallabhaneni A, Kholmanov I, Ruan X, Murthy J, Shi L 2017 Nano lett. 17 2049Google Scholar

    [30]

    Feng T, Yao W, Wang Z, Shi J, Li C, Cao B, Ruan X 2017 Phys. Rev. B 95 195202

    [31]

    Feng T, Zhong Y, Shi J, Ruan X 2019 Phys. Rev. B 99 045301Google Scholar

    [32]

    Chen J, Xu X, Zhou J, Li B 2022 Rev. Mod. Phys. 94 025002Google Scholar

    [33]

    Huang Y, Feng W, Yu X, Deng C, Yang N 2020 Chin. Phys. B 29 126303Google Scholar

    [34]

    Giri A, Hopkins P E 2020 Adv. Funct. Mater. 30 1903857Google Scholar

    [35]

    Lin S, Buehler M J 2013 Nanotechnology 24 165702Google Scholar

    [36]

    Wang M, Galpaya D, Lai Z B, Xu Y, Yan C 2014 Int. J. Smart Nano Mat. 5 123Google Scholar

    [37]

    Zhang L, Liu L 2017 ACS Appl. Mater. Interfaces 9 28949Google Scholar

    [38]

    Wang M, Hu N, Zhou L, Yan C 2015 Carbon 85 414Google Scholar

    [39]

    Wang Y, Zhan H F, Xiang Y, Yang C, Wang C M, Zhang Y Y 2015 J. Phys. Chem. C 119 12731Google Scholar

    [40]

    Liu C, Yu W, Chen C, Xie H, Cao B 2020 Inter. J. Heat Mass Trans. 163 120393Google Scholar

    [41]

    Wei X, Zhang T, Luo T 2017 ACS Energy Lett. 2 2283Google Scholar

    [42]

    Sun F, Zhang T, Jobbins M M, Guo Z, Zhang X, Zheng Z, Tang D, Ptasinska S, Luo T 2014 Adv. Mater. 26 6093Google Scholar

    [43]

    Qiu L, Guo P, Kong Q, Tan C W, Liang K, Wei J, Tey J N, Feng Y, Zhang X, Tay B K 2019 Carbon 145 725Google Scholar

    [44]

    Zhang Y, Ma D, Zang Y, Wang X, Yang N 2018 Front. Energy Res. 6 48Google Scholar

    [45]

    Xiong Y, Yu X, Huang Y, Yang J, Li L, Yang N, Xu D 2019 Mater. Today Phys. 11 100139Google Scholar

    [46]

    Ma D, Zhang G, Zhang L 2020 J. Phys. DAppl. Phys. 53 434001Google Scholar

    [47]

    Hao Q, Garg J 2021 ES Mater. Manuf. 14 36

    [48]

    Wang S, Xu D, Gurunathan R, Snyder G J, Hao Q 2020 J. Mater. 6 248

    [49]

    Xu D, Hanus R, Xiao Y, Wang S, Snyder G J, Hao Q 2018 Mater. Today Phys. 6 53Google Scholar

    [50]

    Ma D, Zhao Y, Zhang L 2021 J. Appl. Phys. 129 175302Google Scholar

    [51]

    Xiong G, Wang J-S, Ma D, Zhang L 2020 EPL 128 54007Google Scholar

    [52]

    Zhou Y, Zhang X, Hu M 2016 Nanoscale 8 1994Google Scholar

    [53]

    Rastgarkafshgarkolaei R, Zhang J, Polanco C A, Le N Q, Ghosh A W, Norris P M 2019 Nanoscale 11 6254Google Scholar

    [54]

    Yang L, Wan X, Ma D, Jiang Y, Yang N 2021 Phys. Rev. B 103 155305Google Scholar

    [55]

    Wan X, Feng W, Wang Y, Wang H, Zhang X, Deng C, Yang N 2019 Nano Lett. 19 3387Google Scholar

    [56]

    Wan X, Ma D, Pan D, Yang L, Yang N 2021 Mater. Today Phys. 20 100445Google Scholar

    [57]

    Ju S, Shiga T, Feng L, Hou Z, Tsuda K, Shiomi J 2017 Phys. Rev. X 7 021024

    [58]

    Roy Chowdhury P, Reynolds C, Garrett A, Feng T, Adiga S P, Ruan X 2020 Nano Energy 69 104428Google Scholar

    [59]

    Shanker A, Li C, Kim G H, Gidley D, Pipe K P, Kim J 2017 Sci. Adv. 3 e1700342Google Scholar

    [60]

    Kim G-H, Lee D, Shanker A, Shao L, Kwon M S, Gidley D, Kim J, Pipe K P 2015 Nat. Mater. 14 295Google Scholar

    [61]

    Zhang L, Liu L 2019 Nanoscale 11 3656Google Scholar

    [62]

    Luo T, Lloyd J R 2012 Adv. Funct. Mater. 22 2495Google Scholar

    [63]

    Losego M D, Grady M E, Sottos N R, Cahill D G, Braun P V 2012 Nat. Mater. 11 502Google Scholar

    [64]

    Mehra N, Mu L, Ji T, Yang X, Kong J, Gu J, Zhu J 2018 Appl. Mater. Today 12 92Google Scholar

    [65]

    Han H, Mérabia S, Müller-Plathe F 2017 J. Phys. Chem. Lett. 8 1946Google Scholar

    [66]

    Xiong Y, W H, Gao J, Chen W, Zhang J, Yue Y 2019 Acta Phys. Chim. Sin. 35 1150Google Scholar

    [67]

    Shen X, Wang Z, Wu Y, Liu X, He Y B, Kim J K 2016 Nano Lett. 16 3585Google Scholar

    [68]

    Renteria J, Legedza S, Salgado R, Balandin M, Ramirez S, Saadah M, Kargar F, Balandin A 2015 Mater. Design 88 214Google Scholar

    [69]

    Wu X, Luo T 2014 J. Appl. Phys. 115 014901Google Scholar

    [70]

    Mann D, Pop E, Cao J, Wang Q, Goodson K 2006 J. Phys. Chem. B 110 1502Google Scholar

    [71]

    Maassen J, Lundstrom M 2016 J. Appl. Phys. 119 095102Google Scholar

    [72]

    Lu Z, Shi J, Ruan X 2019 J. Appl. Phys. 125 085107Google Scholar

    [73]

    Zhong J, Xi Q, Wang Z, Nakayama T, Li X, Liu J, Zhou J 2021 J. App. Phys. 129 195102Google Scholar

    [74]

    Guo Y, Zhang Z, Bescond M, Xiong S, Nomura M, Volz S 2021 Phys. Rev. B 103 174306Google Scholar

    [75]

    Cheng Z, Li R, Yan X, Jernigan G, Shi J, Liao M E, Hines N J, Gadre C A, Idrobo J C, Lee E, Hobart K D, Goorsky M S, Pan X, Luo T, Graham S 2021 Nat. Commun. 12 6901Google Scholar

    [76]

    Mortazavi B, Podryabinkin E V, Roche S, Rabczuk T, Zhuang X, Shapeev A V 2020 Mater. Horiz. 7 2359Google Scholar

  • [1] 李耀隆, 李哲, 李松远, 张任良. 层间共价键和拉伸应变对双层石墨烯纳米带热导率的调控. 物理学报, 2023, 72(24): 243101. doi: 10.7498/aps.72.20231230
    [2] 刘秀成, 杨智, 郭浩, 陈颖, 罗向龙, 陈健勇. 金刚石/环氧树脂复合物热导率的分子动力学模拟. 物理学报, 2023, 72(16): 168102. doi: 10.7498/aps.72.20222270
    [3] 郑建军, 张丽萍. 单层Cu2X(X=S,Se):具有低晶格热导率的优秀热电材料. 物理学报, 2023, 0(0): 0-0. doi: 10.7498/aps.72.20220015
    [4] 郑翠红, 杨剑, 谢国锋, 周五星, 欧阳滔. 离子辐照对磷烯热导率的影响及其机制分析. 物理学报, 2022, 71(5): 056101. doi: 10.7498/aps.71.20211857
    [5] 唐道胜, 华钰超, 周艳光, 曹炳阳. GaN薄膜的热导率模型研究. 物理学报, 2021, 70(4): 045101. doi: 10.7498/aps.70.20201611
    [6] 沈翔, 赵立业, 黄璞, 孔熙, 季鲁敏. 金刚石氮-空位色心的原子自旋声子耦合机理. 物理学报, 2021, 70(6): 068501. doi: 10.7498/aps.70.20201848
    [7] 郑翠红, 杨剑, 谢国锋, 周五星, 欧阳滔. 离子辐照对磷烯热导率的影响及其机制分析. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211857
    [8] 霍龙桦, 谢国锋. 表面低配位原子对声子的散射机制. 物理学报, 2019, 68(8): 086501. doi: 10.7498/aps.68.20190194
    [9] 冯黛丽, 冯妍卉, 石珺. 介孔复合材料声子输运的格子玻尔兹曼模拟. 物理学报, 2016, 65(24): 244401. doi: 10.7498/aps.65.244401
    [10] 惠治鑫, 贺鹏飞, 戴瑛, 吴艾辉. 硅功能化石墨烯热导率的分子动力学模拟. 物理学报, 2014, 63(7): 074401. doi: 10.7498/aps.63.074401
    [11] 郑伯昱, 董慧龙, 陈非凡. 基于量子修正的石墨烯纳米带热导率分子动力学表征方法. 物理学报, 2014, 63(7): 076501. doi: 10.7498/aps.63.076501
    [12] 张程宾, 程启坤, 陈永平. 分形结构纳米复合材料热导率的分子动力学模拟研究. 物理学报, 2014, 63(23): 236601. doi: 10.7498/aps.63.236601
    [13] 黄丛亮, 冯妍卉, 张欣欣, 李静, 王戈, 侴爱辉. 金属纳米颗粒的热导率. 物理学报, 2013, 62(2): 026501. doi: 10.7498/aps.62.026501
    [14] 吴子华, 谢华清, 曾庆峰. Ag-ZnO纳米复合热电材料的制备及其性能研究. 物理学报, 2013, 62(9): 097301. doi: 10.7498/aps.62.097301
    [15] 李威, 冯妍卉, 唐晶晶, 张欣欣. 碳纳米管Y形分子结的热导率与热整流现象. 物理学报, 2013, 62(7): 076107. doi: 10.7498/aps.62.076107
    [16] 李静, 冯妍卉, 张欣欣, 黄丛亮, 杨穆. 考虑界面散射的金属纳米线热导率修正. 物理学报, 2013, 62(18): 186501. doi: 10.7498/aps.62.186501
    [17] 杨平, 王晓亮, 李培, 王欢, 张立强, 谢方伟. 氮掺杂和空位对石墨烯纳米带热导率影响的分子动力学模拟. 物理学报, 2012, 61(7): 076501. doi: 10.7498/aps.61.076501
    [18] 黄丛亮, 冯妍卉, 张欣欣, 李威, 杨穆, 李静, 王戈. 介孔二氧化硅基导电聚合物复合材料热导率的实验研究. 物理学报, 2012, 61(15): 154402. doi: 10.7498/aps.61.154402
    [19] 杨平, 吴勇胜, 许海锋, 许鲜欣, 张立强, 李培. TiO2/ZnO纳米薄膜界面热导率的分子动力学模拟. 物理学报, 2011, 60(6): 066601. doi: 10.7498/aps.60.066601
    [20] 王建立, 熊国平, 顾明, 张兴, 梁吉. 多壁碳纳米管/聚丙烯复合材料热导率研究. 物理学报, 2009, 58(7): 4536-4541. doi: 10.7498/aps.58.4536
计量
  • 文章访问数:  4420
  • PDF下载量:  225
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-21
  • 修回日期:  2022-04-16
  • 上网日期:  2022-08-10
  • 刊出日期:  2022-08-20

/

返回文章
返回