搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

聚苯硫醚熔体的压致凝固行为

王志飞 王路 王菊 刘秀茹

引用本文:
Citation:

聚苯硫醚熔体的压致凝固行为

王志飞, 王路, 王菊, 刘秀茹

Pressure-induced rapid solidification of polyphenylene sulfide melt

Wang Zhi-Fei, Wang Lu, Wang Ju, Liu Xiu-Ru
PDF
HTML
导出引用
  • 采用施加压力的方法将聚苯硫醚熔体凝固, 凝固后获得的聚苯硫醚样品经过降温和卸压后在常温常压下回收. X射线衍射和差示扫描量热分析表明: 约20 ms时间的快速压缩过程可以抑制熔体结晶, 制备出非晶态聚苯硫醚块材, 样品的表面及中心都是非晶态. 非晶态聚苯硫醚的玻璃化转变温度和晶化温度分别为318和362 K. 常压下的退火实验表明, 非晶态聚苯硫醚在425 K等温结晶的产物为正交相晶型. 压致凝固法中熔体的凝固不是靠温度变化, 而是靠压力变化, 样品表面和内部处在一致的温度下同时受压凝固, 避免了热传导对非晶尺寸的影响, 因此非常有利于获得结构均匀的大尺寸非晶态材料.
    In this work, pressure-induced rapid solidification of polyphenylene sulfide (PPS) melt is studied on a pressure-jump apparatus. Five PPS samples under a pressure of 0.1 GPa are heated to 563 K, 573 K, 583 K, 603 K and 613 K, respectively. These samples are rapidly compressed to 2.4 GPa in about 20 ms. The solidified samples are quenched to room temperature and then depressured to ambient pressure. The X-ray diffraction (XRD) analyses of the recovered samples indicate that three PPS samples, prepared at 563 K, 573 K and 583 K, contain crystal phases but their crystallinity is lower than that of the original PPS powder. The remaining two PPS samples, prepared at 603 K and 613 K, are in amorphous state but do not sharp crystal diffraction peaks in the XRD patterns. Differential scanning calorimetry curves of the five PPS samples each display an endothermic step of glass transition at about 325 K and an exothermic peak of recrystallization around 360 K. The glass transition temperature decreases roughly with the increase of preparation temperature. The thermal enthalpy of recrystallization process increases with the increase of preparation temperature, indicating that the content of amorphous phase increases. We speculate that the recovered samples are in a “frozen state” of their parent liquid. At 563 K, 573 K and 583 K, the crystalline phases partially melt. More crystal phases melt with the increase of preparation temperature. The molten part is rapidly solidified into amorphous phase. At a temperature higher than 603 K, the crystalline phase fully melts, and after being rapidly compressed, amorphous PPS sample is obtained. For the amorphous PPS sample prepared at 613 K, we investigate whether the interior of this amorphous PPS sample is also in amorphous state. Micro XRD analysis indicates that the central part of the PPS sample is also in amorphous state, which suggests that this PPS sample is of a fully amorphous bulk. For the amorphous PPS sample prepared at 613 K, we investigate its recrystallization product. After being annealed at 425 K for 2 h, the amorphous phase, which is solidified from the melt of crystal phase, is recrystallized into the orthorhombic crystal phase. The results in this work indicate that the rapid compression can inhibit the PPS melt from being crystalized, so, it is a way to prepare amorphous PPS bulk. Since the solidification of polymer melt is realized by increasing pressure instead of quenching and is not limited by polymer thermal conductivity, it is a promising way to prepare amorphous polymer bulks with large size.
      通信作者: 刘秀茹, xrliu@swjtu.edu.cn
    • 基金项目: 国家级-基于人工表面等离激元的功能集成型辐射器研究(10774123)
      Corresponding author: Liu Xiu-Ru, xrliu@swjtu.edu.cn
    [1]

    吕军 2006 博士学位论文 (成都: 四川大学)

    Lü J 2006 Ph. D. Dissertation (Chengdu: Sichuan University) (in Chinese)

    [2]

    Cheng S Z D, Wu Z Q, Wunderlich B 1987 Macromolecules 20 2802Google Scholar

    [3]

    Lu S X, Cebe P 1996 J. Appl. Polym. Sci. 61 473Google Scholar

    [4]

    Mao H K, Hemley R J 2007 Proc. Natl. Acad. Sci. U.S.A. 104 9114Google Scholar

    [5]

    王彪, 万同, 曾威 2012 高分子通报 10 63

    Wang B, Wan T, Zeng W 2012 Polym. Bull. 10 63

    [6]

    Mei Z, Chung D D L 2000 Int. J. Adhes. Adhes. 20 273Google Scholar

    [7]

    Yang Y Q, Duan H J, Zhang G, Long S R, Yang J, Wang X J 2013 J. Polym. Res. 20 198Google Scholar

    [8]

    Lü J, Huang R, Oh I K 2007 Macromol. Chem. Phys. 208 405Google Scholar

    [9]

    Schultze J D, Böhning M, Springer J 1993 Makromol. Chem. 194 339Google Scholar

    [10]

    Lu S X, Cebe P, Capel M 1997 Macromolecules 30 6243Google Scholar

    [11]

    Lu S X, Cebe P 1996 Polymer 37 4857Google Scholar

    [12]

    Yang X T, Tang L, Guo Y Q, Liang C B, Zhang Q Y, Kou K C, Gu J W 2017 Composites Part A 101 237Google Scholar

    [13]

    Huo P, Cebe P 1992 Colloid. Polym. Sci. 270 840Google Scholar

    [14]

    Hong S M, Chen L Y, Liu X R, Wu X H, Su L 2005 Rev. Sci. Instrum. 76 053905Google Scholar

    [15]

    Liu X R, Zhang L J, Yuan C S, Jia R, Shao C G, Wang M Y, Hong S M 2018 Polymers 10 847Google Scholar

    [16]

    Liu X R, Jia R, Zhang D D, Yuan C S, Shao C G, Hong S M 2018 J. Phys. Condens. Matter 30 154001Google Scholar

    [17]

    Hong S M, Liu X R, Su L, Huang D H, Li L B 2006 J. Phys. D: Appl. Phys. 39 3684Google Scholar

    [18]

    Yuan C S, Hong S M, Li X X, Shen R, He Z, Lv S J, Liu X R, Lv J, Xi D K 2011 J. Phys. D: Appl. Phys. 44 165405Google Scholar

    [19]

    Zhang R C, Li R, Lu A, Jin Z J, Liu B Q, Xu Z B 2013 Polym. Int. 62 449Google Scholar

    [20]

    Zhang L J, Ren Y, Liu X R, Han F, Lutterodt K E, Wang H Y, He Y L, Wang J L, Zhao Y, Yang W G 2018 Sci. Rep. 8 4558Google Scholar

  • 图 1  活塞-圆筒式高压模具及样品组装方式示意图

    Fig. 1.  Sample assembly in the piston-cylinder mode.

    图 2  聚苯硫醚原始粉末的(a)常规XRD谱和(b) DSC曲线

    Fig. 2.  (a) XRD pattern and (b) DSC trace of polyphenylene sulfide (PPS) powder.

    图 3  不同温度下快压凝固的聚苯硫醚样品的常规XRD谱

    Fig. 3.  XRD patterns of PPS samples which is solidified by rapid compression at different temperatures.

    图 4  613 K温度下快压凝固样品中心位置的微区XRD谱

    Fig. 4.  Micro XRD pattern taken at the center of PPS sample, which is solidified by rapid compression at 613 K.

    图 5  不同温度下快压凝固的聚苯硫醚样品的DSC曲线, 内插图给出了不同热力学参数的取值方法

    Fig. 5.  DSC traces of PPS samples which is solidified by rapid compression at different temperatures.

    图 6  快压凝固样品在425 K退火再结晶后的XRD图谱

    Fig. 6.  XRD pattern of PPS sample after recrystallized at 425 K.

    图 7  原始粉末和613 K温度下快压凝固的聚苯硫醚样品的MDSC曲线 (a)反映玻璃化转变的可逆信号(内插图为急冷法制备的聚苯硫醚非晶薄膜的DSC曲线[19]); (b)反映晶化过程的不可逆信号

    Fig. 7.  MDSC traces of PPS powder and amorphous PPS sample which is rapidly solidified at 613 K: (a) Reversible curve of glass transition; (b) irreversible curve of crystallization. The inset in panel (a) is the DSC trace of amorphous PPS which is solidified by rapidly quenching[19].

    表 1  快压凝固的聚苯硫醚样品的热力学参数

    Table 1.  Thermal dynamics parameters of PPS samples which is solidified by rapid compression.

    Sample No.Tg/KTonset/KTc/KTend/KΔHc/J·g–1ΔT = TonsetTg/K
    原始粉末344.0
    563 K快压凝固样品320.3354.0363.0379.010.433.7
    573 K快压凝固样品321.0351.0360.6373.812.730.0
    583 K快压凝固样品320.5352.0360.6368.520.831.5
    603 K快压凝固样品318.3352.0361.2367.024.333.7
    613 K快压凝固样品318.0350.0362.0367.827.032.0
    急冷法非晶薄膜[19]358.0388.0
    注: 玻璃化转变温度Tg; 结晶起始温度Tonset; 晶化峰峰值Tc; 结晶结束温度Tend; 晶化热焓ΔHc; 过冷液相区宽度ΔT.
    下载: 导出CSV
  • [1]

    吕军 2006 博士学位论文 (成都: 四川大学)

    Lü J 2006 Ph. D. Dissertation (Chengdu: Sichuan University) (in Chinese)

    [2]

    Cheng S Z D, Wu Z Q, Wunderlich B 1987 Macromolecules 20 2802Google Scholar

    [3]

    Lu S X, Cebe P 1996 J. Appl. Polym. Sci. 61 473Google Scholar

    [4]

    Mao H K, Hemley R J 2007 Proc. Natl. Acad. Sci. U.S.A. 104 9114Google Scholar

    [5]

    王彪, 万同, 曾威 2012 高分子通报 10 63

    Wang B, Wan T, Zeng W 2012 Polym. Bull. 10 63

    [6]

    Mei Z, Chung D D L 2000 Int. J. Adhes. Adhes. 20 273Google Scholar

    [7]

    Yang Y Q, Duan H J, Zhang G, Long S R, Yang J, Wang X J 2013 J. Polym. Res. 20 198Google Scholar

    [8]

    Lü J, Huang R, Oh I K 2007 Macromol. Chem. Phys. 208 405Google Scholar

    [9]

    Schultze J D, Böhning M, Springer J 1993 Makromol. Chem. 194 339Google Scholar

    [10]

    Lu S X, Cebe P, Capel M 1997 Macromolecules 30 6243Google Scholar

    [11]

    Lu S X, Cebe P 1996 Polymer 37 4857Google Scholar

    [12]

    Yang X T, Tang L, Guo Y Q, Liang C B, Zhang Q Y, Kou K C, Gu J W 2017 Composites Part A 101 237Google Scholar

    [13]

    Huo P, Cebe P 1992 Colloid. Polym. Sci. 270 840Google Scholar

    [14]

    Hong S M, Chen L Y, Liu X R, Wu X H, Su L 2005 Rev. Sci. Instrum. 76 053905Google Scholar

    [15]

    Liu X R, Zhang L J, Yuan C S, Jia R, Shao C G, Wang M Y, Hong S M 2018 Polymers 10 847Google Scholar

    [16]

    Liu X R, Jia R, Zhang D D, Yuan C S, Shao C G, Hong S M 2018 J. Phys. Condens. Matter 30 154001Google Scholar

    [17]

    Hong S M, Liu X R, Su L, Huang D H, Li L B 2006 J. Phys. D: Appl. Phys. 39 3684Google Scholar

    [18]

    Yuan C S, Hong S M, Li X X, Shen R, He Z, Lv S J, Liu X R, Lv J, Xi D K 2011 J. Phys. D: Appl. Phys. 44 165405Google Scholar

    [19]

    Zhang R C, Li R, Lu A, Jin Z J, Liu B Q, Xu Z B 2013 Polym. Int. 62 449Google Scholar

    [20]

    Zhang L J, Ren Y, Liu X R, Han F, Lutterodt K E, Wang H Y, He Y L, Wang J L, Zhao Y, Yang W G 2018 Sci. Rep. 8 4558Google Scholar

  • [1] 程琪, 孙永昊, 汪卫华. 超快差示扫描量热数据的俯视法分析. 物理学报, 2024, 73(7): 078101. doi: 10.7498/aps.73.20232027
    [2] 王丽娜, 赵兴宇, 尚洁莹, 周恒为. 正丙醇、正丁醇和正辛醇中Debye弛豫动力学的测量与分析. 物理学报, 2023, 72(3): 037701. doi: 10.7498/aps.72.20221856
    [3] 王路, 王菊, 李娜娜, 梁策, 王文丹, 何竹, 刘秀茹. 快速加压引起的硒熔体结晶行. 物理学报, 2021, 70(15): 156201. doi: 10.7498/aps.70.20210253
    [4] 文大东, 邓永和, 戴雄英, 吴安如, 田泽安. 钽过冷液体等温晶化的原子层面机制. 物理学报, 2020, 69(19): 196101. doi: 10.7498/aps.69.20200665
    [5] 姜文龙. 非晶聚苯乙烯和Pd40Ni10Cu30P20玻璃化转变中比热变化的机理和定量研究. 物理学报, 2020, 69(12): 126401. doi: 10.7498/aps.69.20200331
    [6] 柯海波, 蒲朕, 张培, 张鹏国, 徐宏扬, 黄火根, 刘天伟, 王英敏. 铀基非晶合金的发展现状. 物理学报, 2017, 66(17): 176104. doi: 10.7498/aps.66.176104
    [7] 吴学科, 黄伟其, 董泰阁, 王刚, 刘世荣, 秦朝介. 热退火、激光束和电子束等作用对纳米硅制备及其局域态发光特性的影响. 物理学报, 2016, 65(10): 104202. doi: 10.7498/aps.65.104202
    [8] 林生军, 黄印, 谢东日, 闵道敏, 王威望, 杨柳青, 李盛涛. 环氧树脂高温分子链松弛与玻璃化转变特性. 物理学报, 2016, 65(7): 077701. doi: 10.7498/aps.65.077701
    [9] 徐春龙, 侯兆阳, 刘让苏. Ca70Mg30金属玻璃形成过程热力学、 动力学和结构特性转变机理的模拟研究. 物理学报, 2012, 61(13): 136401. doi: 10.7498/aps.61.136401
    [10] 卫来, 周兰兰, 鹿桂花, 张文, 张武智, 张尚, 冯永红, 周恒为, 张晋鲁, 黄以能. 邻苯二甲酸二甲酯系材料中-弛豫的降温介电谱测量与分析. 物理学报, 2012, 61(1): 017701. doi: 10.7498/aps.61.017701
    [11] 樊小辉, 赵兴宇, 王丽娜, 张丽丽, 周恒为, 张晋鲁, 黄以能. 分子串模型中空间弛豫模式的弛豫动力学的蒙特卡罗模拟. 物理学报, 2011, 60(12): 126401. doi: 10.7498/aps.60.126401
    [12] 郭秀珍, 周恒为, 张丽丽, 吴文惠, 张晋鲁, 黄以能. 邻苯二甲酸二酯系玻璃材料中裂纹愈合效应研究. 物理学报, 2010, 59(1): 417-421. doi: 10.7498/aps.59.417
    [13] 张丽丽, 张晋鲁, 蒋建国, 周恒为, 黄以能. 取向玻璃体系中分子之间取向关联的模型化及其模拟与分析. 物理学报, 2008, 57(9): 5817-5822. doi: 10.7498/aps.57.5817
    [14] 李世彬, 吴志明, 李 伟, 于军胜, 蒋亚东, 廖乃镘. 氢化硅薄膜的晶化机理研究. 物理学报, 2008, 57(11): 7114-7118. doi: 10.7498/aps.57.7114
    [15] 周恒为, 张晋鲁, 黄以能, 应学农, 张 亮, 吴文惠, 沈异凡. 邻苯二甲酸二甲酯系材料的液态簧振动力学谱测量. 物理学报, 2007, 56(11): 6547-6551. doi: 10.7498/aps.56.6547
    [16] 程伟东, 孙民华, 李佳云, 王爱屏, 孙永丽, 刘 芳, 刘雄军. Cu60Zr30Ti10非晶合金弛豫和晶化过程的小角X射线散射研究. 物理学报, 2006, 55(12): 6673-6676. doi: 10.7498/aps.55.6673
    [17] 周 锋, 梁开明, 王国梁. 电场热处理条件下TiO2薄膜的晶化行为研究. 物理学报, 2005, 54(6): 2863-2867. doi: 10.7498/aps.54.2863
    [18] 于 威, 何 杰, 孙运涛, 朱海丰, 韩 理, 傅广生. 碳化硅薄膜脉冲激光晶化特性研究. 物理学报, 2004, 53(6): 1930-1934. doi: 10.7498/aps.53.1930
    [19] 李 正, 白海洋, 赵德乾, 潘明祥, 王万录, 汪卫华. 永磁性Pr55Al12Fe30Cu3 大块金属玻璃. 物理学报, 2003, 52(3): 652-655. doi: 10.7498/aps.52.652
    [20] 戚泽明, 施朝淑, 王正, 魏亚光, 谢亚宁, 胡天斗, 李福利. 非晶和纳米ZrO2·Y2O3(15%)的X射线衍射与扩展X射线吸收精细结构研究. 物理学报, 2001, 50(7): 1318-1323. doi: 10.7498/aps.50.1318
计量
  • 文章访问数:  9126
  • PDF下载量:  80
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-02
  • 修回日期:  2020-02-03
  • 刊出日期:  2020-05-05

/

返回文章
返回