搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碳纳米管从硅基板上剥离的拉伸分子动力学模拟研究

彭德锋 江五贵 彭川

引用本文:
Citation:

碳纳米管从硅基板上剥离的拉伸分子动力学模拟研究

彭德锋, 江五贵, 彭川

Steered molecular dynamics simulation of peeling a carbon nanotube on silicon substrate

Peng De-Feng, Jiang Wu-Gui, Peng Chuan
PDF
导出引用
  • 采用拉伸分子动力学方法研究了单壁碳纳米管(8, 8)在室温下从硅基板上被剥离的过程.当碳纳米管(CNT)在硅基底上被剥离时, 剥离距离和理想弹簧所测平均剥离力之间呈现一定规律的关系曲线,并出现了较大的正、负峰值. 比较了不同剥离速度下的平均剥离力,并拟合了其峰值与速度的关系. 拉伸分子动力学模拟结果显示,所需剥离力的最大值与速度之间呈现一定的线性关系, 模拟结果同生物物理学上类似的剥离实验结果符合较好,但相比于高分子, CNT和硅(Si)组成的界面吸附性能更强.讨论了碳纳米管长度、 半径及缺陷对剥离过程的影响,研究表明:所需最大的剥离力与CNT的长度无关, 但随CNT半径的增加,需要的最大剥离力线性增加; 5-7-7-5缺陷对剥离力最大值影响较小,而半径变化缺陷会削减最大剥离力. 在原子尺度对未来的试验进行了理论预测,为碳纳米管在硅微电子工业中的应用提供了理论基础.
    Steered molecular dynamics (SMD) simulations are performed to study the peeling of a single wall carbon nanotube (8, 8) from a silicon surface at room temperature. There is a regular relationship between the average force probed by the ideal spring and the peeling distance when the carbon nanotube (CNT) is peeled from the silicon substrate. A large positive and a large negative peak value can be found in the peeling process. The average force for varying peeling velocities is investigated and their peak values are fitted to a function of the peeling velocity. The SMD simulation results show that there is a linear relationship between the peak value and the peeling velocity, which is consistent well with some biophysics peeling experiments. Compared with macromolecules, the CNT has a strong adhesion to the silicon surface. The influences of both radius and length as well as the defects of the CNT on the peeling process are also examined. The numerical results indicate that the peak value of the peeling force is independent of the length of the CNT but increases linearly with the radius of the CNT increasing. The peak value of the peeling force is almost independent of the 5-7-7-5 defect in the CNT but critically weakened by the radius defect of the CNT. The suggested method provides a theoretical prediction for the future experiment at atomic scale, which is helpful for the potential application of the CNT in the silicon-based microelectronics industry.
    • 基金项目: 国家自然科学基金(批准号: 10902048和11162014)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 10902048 and 11162014).
    [1]

    Geppert L 2000 IEEE Spectrum 37 46

    [2]

    Hu C M 1999 Nanotechnology 10 113

    [3]

    Wang T, Jeppson K, Olofsson N, Campbell E E B, Liu J 2009 Nanotechnology 20 5203

    [4]

    Iijima S 1991 Nature 354 56

    [5]

    Li R, Hu Y Z, Wang H 2011 Acta Phys. Sin. 60 016106 (in Chinese) [李瑞, 胡元中, 王慧 2011 物理学报 60 016106]

    [6]

    Chowdhury S C, Okabe T 2007 Composites A 38 747

    [7]

    Grubmüller H, Heymann B, Tavan P 1996 Science 271 997

    [8]

    Marszalek P E, Lu H, Li H, Carrion-Vazquez M, Oberhauser A F, Schulten K, Fernandez J M 1999 Nature 402 100

    [9]

    Gullingsrud J, Schulten K 2003 Biophys. J. 85 2087

    [10]

    Rief M, Oesterhelt F, Heymann B, Gaub H E 1997 Science 275 1295

    [11]

    Reif M, Gautel M, Oesterhelt F, Fernandez J M, Gaub H E 1997 Science 276 1109

    [12]

    Cui S X, Liu C J, Zhang X 2003 Nano. Lett. 3 245

    [13]

    Cui S X, Liu C J, Zhang W K, Zhang X, Wu C 2003 Macromolecules 36 3779

    [14]

    Zhang W K, Zhang X 2003 Prog. Polym. Sci. 28 1271

    [15]

    Wang Y, Zhang L X 2008 Acta Phys. Sin 57 3281 (in Chinese) [王禹, 章林溪 2008 物理学报 57 3281]

    [16]

    Büyüköztürk O, Buehler J M, Lau D, Tuakta C 2011 Int. J. Solids Struct. 48 2131

    [17]

    Shi X H, Kong Y, Zhao Y P, Gao H J 2005 Acta Mech. Sinica-prc 21 249

    [18]

    Jiang H, Feng X Q, Huang Y, Hwang K C, Wu P D 2004 Comput. Method. Appl. M. 193 3419

    [19]

    Qin Z, Qin Q H, Feng X Q 2008 Phys. Lett. A 372 6661

    [20]

    Tersoff J 1988 Phys. Rev. B 37 6991

    [21]

    Matyushov D V, Schmid R 1996 J. Chem. Phys. 104 8627

    [22]

    Girifalco L A, Hodak M, Lee R S 2000 Phys. Rev. B 62 104

    [23]

    Plimpton S 1995 J. Comput. Phys. 117 1

    [24]

    Wang Y, Zhang L X 2008 Acta Polym. Sin. 3 216 (in Chinese) [王禹, 章林溪 2008 高分子学报 3 216]

  • [1]

    Geppert L 2000 IEEE Spectrum 37 46

    [2]

    Hu C M 1999 Nanotechnology 10 113

    [3]

    Wang T, Jeppson K, Olofsson N, Campbell E E B, Liu J 2009 Nanotechnology 20 5203

    [4]

    Iijima S 1991 Nature 354 56

    [5]

    Li R, Hu Y Z, Wang H 2011 Acta Phys. Sin. 60 016106 (in Chinese) [李瑞, 胡元中, 王慧 2011 物理学报 60 016106]

    [6]

    Chowdhury S C, Okabe T 2007 Composites A 38 747

    [7]

    Grubmüller H, Heymann B, Tavan P 1996 Science 271 997

    [8]

    Marszalek P E, Lu H, Li H, Carrion-Vazquez M, Oberhauser A F, Schulten K, Fernandez J M 1999 Nature 402 100

    [9]

    Gullingsrud J, Schulten K 2003 Biophys. J. 85 2087

    [10]

    Rief M, Oesterhelt F, Heymann B, Gaub H E 1997 Science 275 1295

    [11]

    Reif M, Gautel M, Oesterhelt F, Fernandez J M, Gaub H E 1997 Science 276 1109

    [12]

    Cui S X, Liu C J, Zhang X 2003 Nano. Lett. 3 245

    [13]

    Cui S X, Liu C J, Zhang W K, Zhang X, Wu C 2003 Macromolecules 36 3779

    [14]

    Zhang W K, Zhang X 2003 Prog. Polym. Sci. 28 1271

    [15]

    Wang Y, Zhang L X 2008 Acta Phys. Sin 57 3281 (in Chinese) [王禹, 章林溪 2008 物理学报 57 3281]

    [16]

    Büyüköztürk O, Buehler J M, Lau D, Tuakta C 2011 Int. J. Solids Struct. 48 2131

    [17]

    Shi X H, Kong Y, Zhao Y P, Gao H J 2005 Acta Mech. Sinica-prc 21 249

    [18]

    Jiang H, Feng X Q, Huang Y, Hwang K C, Wu P D 2004 Comput. Method. Appl. M. 193 3419

    [19]

    Qin Z, Qin Q H, Feng X Q 2008 Phys. Lett. A 372 6661

    [20]

    Tersoff J 1988 Phys. Rev. B 37 6991

    [21]

    Matyushov D V, Schmid R 1996 J. Chem. Phys. 104 8627

    [22]

    Girifalco L A, Hodak M, Lee R S 2000 Phys. Rev. B 62 104

    [23]

    Plimpton S 1995 J. Comput. Phys. 117 1

    [24]

    Wang Y, Zhang L X 2008 Acta Polym. Sin. 3 216 (in Chinese) [王禹, 章林溪 2008 高分子学报 3 216]

  • [1] 秦成龙, 罗祥燕, 谢泉, 吴乔丹. 碳纳米管和碳化硅纳米管热导率的分子动力学研究. 物理学报, 2022, 71(3): 030202. doi: 10.7498/aps.71.20210969
    [2] 杨权, 马立, 耿松超, 林旖旎, 陈涛, 孙立宁. 多壁碳纳米管与金属表面间接触行为的分子动力学模拟. 物理学报, 2021, 70(10): 106101. doi: 10.7498/aps.70.20202194
    [3] 王磊, 张冉冉, 方炜. 含缺陷碳纳米管及碳纳米豆荚静动力特性模拟研究. 物理学报, 2019, 68(16): 166101. doi: 10.7498/aps.68.20190594
    [4] 李瑞, 密俊霞. 界面接枝羟基对碳纳米管运动和摩擦行为影响的分子动力学模拟. 物理学报, 2017, 66(4): 046101. doi: 10.7498/aps.66.046101
    [5] 韩典荣, 王璐, 罗成林, 朱兴凤, 戴亚飞. (n, n)-(2n, 0)碳纳米管异质结的扭转力学特性. 物理学报, 2015, 64(10): 106102. doi: 10.7498/aps.64.106102
    [6] 曹平, 罗成林, 陈贵虎, 韩典荣, 朱兴凤, 戴亚飞. 通量可控的双壁碳纳米管水分子泵. 物理学报, 2015, 64(11): 116101. doi: 10.7498/aps.64.116101
    [7] 杨成兵, 解辉, 刘朝. 锂离子进入碳纳米管端口速度的分子动力学模拟. 物理学报, 2014, 63(20): 200508. doi: 10.7498/aps.63.200508
    [8] 李明林, 林凡, 陈越. 碳纳米锥力学特性的分子动力学研究. 物理学报, 2013, 62(1): 016102. doi: 10.7498/aps.62.016102
    [9] 李威, 冯妍卉, 唐晶晶, 张欣欣. 碳纳米管Y形分子结的热导率与热整流现象. 物理学报, 2013, 62(7): 076107. doi: 10.7498/aps.62.076107
    [10] 张忠强, 丁建宁, 刘珍, Y. Xue, 程广贵, 凌智勇. 碳纳米管-聚乙烯复合材料界面力学特性分析. 物理学报, 2012, 61(12): 126202. doi: 10.7498/aps.61.126202
    [11] 徐葵, 王青松, 谭兵, 陈明璇, 缪灵, 江建军. 形变碳纳米管选择通过性的分子动力学研究. 物理学报, 2012, 61(9): 096101. doi: 10.7498/aps.61.096101
    [12] 姚小虎, 张晓晴, 韩强. 轴向冲击载荷作用下双壁碳纳米管的动力屈曲. 物理学报, 2011, 60(9): 096202. doi: 10.7498/aps.60.096202
    [13] 左学云, 李中秋, 王伟, 孟利军, 张凯旺, 钟建新. 碳纳米管熔接金电极的分子动力学模拟. 物理学报, 2011, 60(6): 066103. doi: 10.7498/aps.60.066103
    [14] 柏 鑫, 王鸣生, 刘 洋, 张耿民, 张兆祥, 赵兴钰, 郭等柱, 薛增泉. 碳纳米管端口的场蒸发. 物理学报, 2008, 57(7): 4596-4601. doi: 10.7498/aps.57.4596
    [15] 王 禹, 章林溪. 外力诱导吸附高分子单链的拉伸分子动力学研究. 物理学报, 2008, 57(5): 3281-3286. doi: 10.7498/aps.57.3281
    [16] 谢根全, 夏 平. 基于微极性弹性力学的碳纳米管中波的传播特性. 物理学报, 2007, 56(12): 7070-7077. doi: 10.7498/aps.56.7070
    [17] 孟利军, 张凯旺, 钟建新. 硅纳米颗粒在碳纳米管表面生长的分子动力学模拟. 物理学报, 2007, 56(2): 1009-1013. doi: 10.7498/aps.56.1009
    [18] 张助华, 郭万林, 郭宇锋. 轴向磁场对碳纳米管电子性质的影响. 物理学报, 2006, 55(12): 6526-6531. doi: 10.7498/aps.55.6526
    [19] 保文星, 朱长纯. 碳纳米管热传导的分子动力学模拟研究. 物理学报, 2006, 55(7): 3552-3557. doi: 10.7498/aps.55.3552
    [20] 李 瑞, 胡元中, 王 慧, 张宇军. 单壁碳纳米管在石墨基底上运动的分子动力学模拟. 物理学报, 2006, 55(10): 5455-5459. doi: 10.7498/aps.55.5455
计量
  • 文章访问数:  4885
  • PDF下载量:  545
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-11-03
  • 修回日期:  2011-12-07
  • 刊出日期:  2012-07-05

碳纳米管从硅基板上剥离的拉伸分子动力学模拟研究

  • 1. 南昌航空大学飞行器工程学院, 南昌 330063;
  • 2. 南昌航空大学航空制造工程学院, 南昌 330063
    基金项目: 国家自然科学基金(批准号: 10902048和11162014)资助的课题.

摘要: 采用拉伸分子动力学方法研究了单壁碳纳米管(8, 8)在室温下从硅基板上被剥离的过程.当碳纳米管(CNT)在硅基底上被剥离时, 剥离距离和理想弹簧所测平均剥离力之间呈现一定规律的关系曲线,并出现了较大的正、负峰值. 比较了不同剥离速度下的平均剥离力,并拟合了其峰值与速度的关系. 拉伸分子动力学模拟结果显示,所需剥离力的最大值与速度之间呈现一定的线性关系, 模拟结果同生物物理学上类似的剥离实验结果符合较好,但相比于高分子, CNT和硅(Si)组成的界面吸附性能更强.讨论了碳纳米管长度、 半径及缺陷对剥离过程的影响,研究表明:所需最大的剥离力与CNT的长度无关, 但随CNT半径的增加,需要的最大剥离力线性增加; 5-7-7-5缺陷对剥离力最大值影响较小,而半径变化缺陷会削减最大剥离力. 在原子尺度对未来的试验进行了理论预测,为碳纳米管在硅微电子工业中的应用提供了理论基础.

English Abstract

参考文献 (24)

目录

    /

    返回文章
    返回