搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

介孔二氧化硅基导电聚合物复合材料热导率的实验研究

黄丛亮 冯妍卉 张欣欣 李威 杨穆 李静 王戈

引用本文:
Citation:

介孔二氧化硅基导电聚合物复合材料热导率的实验研究

黄丛亮, 冯妍卉, 张欣欣, 李威, 杨穆, 李静, 王戈

Thermal conductivity measurements on PANI/SBA-15 and PPy/SBA-15

Huang Cong-Liang, Feng Yan-Hui, Zhang Xin-Xin, Li Wei, Yang Mu, Li Jing, Wang Ge
PDF
导出引用
  • 本文首先制备并表征了介孔二氧化硅SBA-15、 填充导电聚合物的复合材料PANI/SBA-15和复合材料PPy/SBA-15, 并建立双流计实验台开展了材料压片情况下的热导率研究. 在测量得到复合材料热导率的基础上, 引入当量孔径, 结合测量孔径对 PANI/SBA-15和PPy/SBA-15复合材料热导率随填充量的变化进行了定性分析. 分析表明: PANI/SBA-15和PPy/SBA-15复合材料的热导率比基材SBA-15的热导率大得多; 在相同的测量孔径和当量孔径情况下, PANI/SBA-15复合材料的热导率比PPy/SBA-15复合材料的热导率大; 导电聚合物填充到复合材料孔道内和孔道外都有助于热导率的提高, 填充到孔道内比填充到孔道外对热导率提高的贡献更大.
    Conductive polymers polyaniline (PANI) and polypyrrole (PPy) loaded mesoporous silica (SBA-15) composites are prepared and characterized. The one-dimensional reference bar method and the relevant devices to measure the thermal conductivity are introduced and established. The equivalent pore diameter is proposed to characterize the mesostructures of conductive polymers polyaniline (PANI) and polypyrrole (PPy) in PANI/SBA-15 and PPy/SBA-15 composites. The effects of the equivalent and the measurement pore diameters on thermal conductivities of PANI/SBA-15 and PPy/SBA-15 composites are analyzed. The result shows that thermal conductivities of PANI/SBA-15 and PPy/SBA-15 are higher than that of the substrate SBA-15; the thermal conductivity of PANI/SBA-15 is higher than that of PPy/SBA-15; loading of PANI and PPy in pores of PANI/SBA-15 and PPy/SBA-15 composites is more effective than loading outside of pores for improving the thermal conductivities of PANI/SBA-15 and PPy/SBA-15 composites.
    • 基金项目: 国家自然科学基金重点项目(批准号: 50836001)和霍英东教育基金资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (No. 50836001), and the Fok Ying Tong Education Foundation.
    [1]

    Shirakawa H, Louis E L, MacDiarmid A G 1977 J. Chem. Soc. Chem. Comm. 16 578

    [2]

    Liu H, Hu X, Wang J, Boughton R 2002 Macromolecule 35 9414

    [3]

    Park J, Park S, Koukitu A, Hatozaki O, Oyama N 2004 Synth. Met. 141 265

    [4]

    Cardin D J 2002 Adv. Mater. 14 553

    [5]

    Ma L, Tang Q 2002 J. Chongqing Univ. 25 124 (in Chinese) [马利, 汤琪 2002 重庆大学学报 25 124]

    [6]

    Liu D D, Nin P, Xia L 2004 Synthetic Materials Aging and Application 33 43 (in Chinese) [刘丹丹, 宁平, 夏林 2004 合成材料老化与应用 33 43]

    [7]

    Li Y F, Qian R Y 1993 J. Elec. Chem. 362 267

    [8]

    Li Y F, Qian R Y 1989 Synth. Met. 28 127

    [9]

    Li Y F, Qian R Y 1994 Synth. Met. 64 241

    [10]

    Li Y F, Ouyang J Y 2000 Synth. Met. 113 23

    [11]

    Li Y F, Ouyang J Y 1997 Polymer 38 3997

    [12]

    Li Y F, Deng B H, He G F, Wang R Q, Yang C H 2001 J. Appl. Polym. Sci. 79 350

    [13]

    Li S, Qiu Y B, Guo X P 2010 Acta Phys. Chim. Sin. 26 601 (in Chinese) [李胜, 邱于兵, 郭兴蓬 2010 物理化学学报 26 601]

    [14]

    Guo R R, Li G T, Zhang W X, Shen G Q, Shen D Z 2005 Chem. Phys. Chem. 6 2025

    [15]

    Li G T, Bhosale S, Wang T Y, Zhang Y, Zhu H S, Fuhrhop K H 2003 Angew. Chem. Int. Ed. 42 3818

    [16]

    Wu C G, Bein T 1994 Science 264 1757

    [17]

    Cho M S, Choi H J, Ahn W S 2004 Langmuir 20 202

    [18]

    Li N, Li X T, Qiu S L 2004 J. Appl. Polym. Sci. 93 1597

    [19]

    Takei T, Yoshimura K, Yonesaki Y, Kumada N, Kinomura N 2005 J. Porous Mater. 12 337

    [20]

    Coutinho D, Yang Z, Ferraris J P, Balkus K J J 2005 Micropor. Mesopor. Mat. 8l 321

    [21]

    Yu G H, Wang S L, Bai N 2006 New Chem. Mater. 34 42 (in Chinese) [盂桂花、王水利、白妮 2006 化工新型材料34 42]

    [22]

    Coquil T, Fang J, Pilon L 2011 Int. J. Heat Mass Tran. 54 4540

    [23]

    Huang C L, Feng Y H, Zhang X X, Wang G, Li J 2011 Acta Phys. Sin. 60 114401 (in Chinese) [黄丛亮, 冯妍卉, 张欣欣, 王戈, 李静 2011 物理学报 60 114401]

    [24]

    Zhao D Y, Feng J L, Huo Q S, Melosh N, Fredrickson G H, Chmelka B F, Stucky G D 1998 Science 279 548

    [25]

    Wang Y, Noguchi M, Takahashi Y, Ohtsuka Y 2001 Catal. Today 68 3

    [26]

    Weng S H, Lin Z H, Zhang Y, Chen L X, Zhou J Z 2009 Reac. Func. Polym. 69 130

    [27]

    Wang G, Huang X B, Yang M, Zhang X X, Feng Y H, Huang C L 2010 Ninth Asian Thermophysical Properties Conference, Beijing, 2010. 10. 19-22, Invited keynote lecture

    [28]

    Sheng J J, Shan C X, Fan H G, Zhu Z P 2006 J. Xihua Uni. 26 45 (in Chinese) [盛建军, 单春贤, 樊红岗, 朱志萍 2006 西华大学学报(自然科学版) 26 45]

    [29]

    Kubicar L 1990 Comprehensive Analytical Chemistry, Vol. XII, Thermal Analysis, Part E, (Ed. Svehla G, Amsterdam, Oxford, New York, Tokyo: Elsevier) p350

    [30]

    Cahill D G, Pohl R O 1987 Phys. Rev. B 35 4067

    [31]

    Cahill D G 1990 Rev. Sci. Instrum. 61 802

    [32]

    Khandelwal M, Mench M M 2006 J. Power Sources 161 1106

    [33]

    Yeh C L, Wen C Y, Chen Y F, Yeh S H, Wu C H 2001 Exp. Therm. Fluid Sci. 25 349

    [34]

    Xu R P, Xu L 2005 Cryogenics 45 694

    [35]

    Eucken A 1940 Forsh. Ing. Wes - Eng. Res. 11 6

    [36]

    Liu J, He L, Zhang L M 2003 J. Huazhong Univ. of Sci. & Tech. (Nature Science Edition) 31 73 (in Chinese) [刘军, 何莉, 张联盟 2003 华中科技大学学报(自然科学版) 31 73]

    [37]

    Chen X B 1993 Mater. Sci. & Eng. 11 53 (in Chinese) [陈祥宝 1993 材料科学与工程 11 53]

  • [1]

    Shirakawa H, Louis E L, MacDiarmid A G 1977 J. Chem. Soc. Chem. Comm. 16 578

    [2]

    Liu H, Hu X, Wang J, Boughton R 2002 Macromolecule 35 9414

    [3]

    Park J, Park S, Koukitu A, Hatozaki O, Oyama N 2004 Synth. Met. 141 265

    [4]

    Cardin D J 2002 Adv. Mater. 14 553

    [5]

    Ma L, Tang Q 2002 J. Chongqing Univ. 25 124 (in Chinese) [马利, 汤琪 2002 重庆大学学报 25 124]

    [6]

    Liu D D, Nin P, Xia L 2004 Synthetic Materials Aging and Application 33 43 (in Chinese) [刘丹丹, 宁平, 夏林 2004 合成材料老化与应用 33 43]

    [7]

    Li Y F, Qian R Y 1993 J. Elec. Chem. 362 267

    [8]

    Li Y F, Qian R Y 1989 Synth. Met. 28 127

    [9]

    Li Y F, Qian R Y 1994 Synth. Met. 64 241

    [10]

    Li Y F, Ouyang J Y 2000 Synth. Met. 113 23

    [11]

    Li Y F, Ouyang J Y 1997 Polymer 38 3997

    [12]

    Li Y F, Deng B H, He G F, Wang R Q, Yang C H 2001 J. Appl. Polym. Sci. 79 350

    [13]

    Li S, Qiu Y B, Guo X P 2010 Acta Phys. Chim. Sin. 26 601 (in Chinese) [李胜, 邱于兵, 郭兴蓬 2010 物理化学学报 26 601]

    [14]

    Guo R R, Li G T, Zhang W X, Shen G Q, Shen D Z 2005 Chem. Phys. Chem. 6 2025

    [15]

    Li G T, Bhosale S, Wang T Y, Zhang Y, Zhu H S, Fuhrhop K H 2003 Angew. Chem. Int. Ed. 42 3818

    [16]

    Wu C G, Bein T 1994 Science 264 1757

    [17]

    Cho M S, Choi H J, Ahn W S 2004 Langmuir 20 202

    [18]

    Li N, Li X T, Qiu S L 2004 J. Appl. Polym. Sci. 93 1597

    [19]

    Takei T, Yoshimura K, Yonesaki Y, Kumada N, Kinomura N 2005 J. Porous Mater. 12 337

    [20]

    Coutinho D, Yang Z, Ferraris J P, Balkus K J J 2005 Micropor. Mesopor. Mat. 8l 321

    [21]

    Yu G H, Wang S L, Bai N 2006 New Chem. Mater. 34 42 (in Chinese) [盂桂花、王水利、白妮 2006 化工新型材料34 42]

    [22]

    Coquil T, Fang J, Pilon L 2011 Int. J. Heat Mass Tran. 54 4540

    [23]

    Huang C L, Feng Y H, Zhang X X, Wang G, Li J 2011 Acta Phys. Sin. 60 114401 (in Chinese) [黄丛亮, 冯妍卉, 张欣欣, 王戈, 李静 2011 物理学报 60 114401]

    [24]

    Zhao D Y, Feng J L, Huo Q S, Melosh N, Fredrickson G H, Chmelka B F, Stucky G D 1998 Science 279 548

    [25]

    Wang Y, Noguchi M, Takahashi Y, Ohtsuka Y 2001 Catal. Today 68 3

    [26]

    Weng S H, Lin Z H, Zhang Y, Chen L X, Zhou J Z 2009 Reac. Func. Polym. 69 130

    [27]

    Wang G, Huang X B, Yang M, Zhang X X, Feng Y H, Huang C L 2010 Ninth Asian Thermophysical Properties Conference, Beijing, 2010. 10. 19-22, Invited keynote lecture

    [28]

    Sheng J J, Shan C X, Fan H G, Zhu Z P 2006 J. Xihua Uni. 26 45 (in Chinese) [盛建军, 单春贤, 樊红岗, 朱志萍 2006 西华大学学报(自然科学版) 26 45]

    [29]

    Kubicar L 1990 Comprehensive Analytical Chemistry, Vol. XII, Thermal Analysis, Part E, (Ed. Svehla G, Amsterdam, Oxford, New York, Tokyo: Elsevier) p350

    [30]

    Cahill D G, Pohl R O 1987 Phys. Rev. B 35 4067

    [31]

    Cahill D G 1990 Rev. Sci. Instrum. 61 802

    [32]

    Khandelwal M, Mench M M 2006 J. Power Sources 161 1106

    [33]

    Yeh C L, Wen C Y, Chen Y F, Yeh S H, Wu C H 2001 Exp. Therm. Fluid Sci. 25 349

    [34]

    Xu R P, Xu L 2005 Cryogenics 45 694

    [35]

    Eucken A 1940 Forsh. Ing. Wes - Eng. Res. 11 6

    [36]

    Liu J, He L, Zhang L M 2003 J. Huazhong Univ. of Sci. & Tech. (Nature Science Edition) 31 73 (in Chinese) [刘军, 何莉, 张联盟 2003 华中科技大学学报(自然科学版) 31 73]

    [37]

    Chen X B 1993 Mater. Sci. & Eng. 11 53 (in Chinese) [陈祥宝 1993 材料科学与工程 11 53]

  • [1] 唐道胜, 华钰超, 周艳光, 曹炳阳. GaN薄膜的热导率模型研究. 物理学报, 2021, 70(4): 045101. doi: 10.7498/aps.70.20201611
    [2] 方文玉, 陈粤, 叶盼, 魏皓然, 肖兴林, 黎明锴, AhujaRajeev, 何云斌. 二维XO2 (X = Ni, Pd, Pt)弹性、电子结构和热导率. 物理学报, 2021, 70(24): 246301. doi: 10.7498/aps.70.20211015
    [3] 冯黛丽, 冯妍卉, 石珺. 介孔复合材料声子输运的格子玻尔兹曼模拟. 物理学报, 2016, 65(24): 244401. doi: 10.7498/aps.65.244401
    [4] 甘渝林, 王丽, 苏雪琼, 许思维, 孔乐, 沈祥. 用拉曼光谱测量GeSbSe玻璃的热导率. 物理学报, 2014, 63(13): 136502. doi: 10.7498/aps.63.136502
    [5] 袁思伟, 冯妍卉, 王鑫, 张欣欣. α-Al2O3介孔材料导热特性的模拟. 物理学报, 2014, 63(1): 014402. doi: 10.7498/aps.63.014402
    [6] 张程宾, 程启坤, 陈永平. 分形结构纳米复合材料热导率的分子动力学模拟研究. 物理学报, 2014, 63(23): 236601. doi: 10.7498/aps.63.236601
    [7] 李静, 冯妍卉, 张欣欣, 黄丛亮, 杨穆. 考虑界面散射的金属纳米线热导率修正. 物理学报, 2013, 62(18): 186501. doi: 10.7498/aps.62.186501
    [8] 黄丛亮, 冯妍卉, 张欣欣, 李静, 王戈, 侴爱辉. 金属纳米颗粒的热导率. 物理学报, 2013, 62(2): 026501. doi: 10.7498/aps.62.026501
    [9] 曹炳阳, 董若宇, 孔杰, 陈恒, 徐雁, 容启亮, 蔡岸. 纳米孔模板浸润法制备聚乙烯纳米线阵列的热导率的实验研究. 物理学报, 2012, 61(4): 046501. doi: 10.7498/aps.61.046501
    [10] 侯泉文, 曹炳阳, 过增元. 碳纳米管的热导率:从弹道到扩散输运. 物理学报, 2009, 58(11): 7809-7814. doi: 10.7498/aps.58.7809
    [11] 王建立, 熊国平, 顾明, 张兴, 梁吉. 多壁碳纳米管/聚丙烯复合材料热导率研究. 物理学报, 2009, 58(7): 4536-4541. doi: 10.7498/aps.58.4536
    [12] 李世彬, 吴志明, 袁 凯, 廖乃镘, 李 伟, 蒋亚东. 氢化非晶硅薄膜的热导率研究. 物理学报, 2008, 57(5): 3126-3131. doi: 10.7498/aps.57.3126
    [13] 郭 力, 梁林云, 陈 冲, 王命泰, 孔明光, 王孔嘉. 聚苯胺基固态染料敏化太阳电池中电子输运性能的研究. 物理学报, 2007, 56(7): 4270-4276. doi: 10.7498/aps.56.4270
    [14] 封 伟, 易文辉, 冯奕钰, 吴子刚, 张振中. 聚苯胺/碳纳米管复合体的制备及其三阶非线性光学性能研究. 物理学报, 2006, 55(7): 3772-3777. doi: 10.7498/aps.55.3772
    [15] 周 昀, 龙云泽, 陈兆甲, 张志明, 万梅香. 水和乙醇对纳米管结构聚苯胺电阻率的影响. 物理学报, 2005, 54(1): 228-232. doi: 10.7498/aps.54.228
    [16] 赵东林, 曾宪伟, 沈曾民. 碳纳米管/聚苯胺纳米复合管的制备及其微波介电特性研究. 物理学报, 2005, 54(8): 3878-3883. doi: 10.7498/aps.54.3878
    [17] 龙云泽, 陈兆甲, 张志明, 万梅香, 郑 萍, 王楠林, 贺朝会, 耿 斌, 杨海亮, 陈晓华, 王燕萍, 李国政. 纳米管结构聚苯胺的电阻率和磁化率. 物理学报, 2003, 52(1): 175-179. doi: 10.7498/aps.52.175
    [18] 许 杰, 雒建林, 陈兆甲, 龙云泽, 白海洋, 万梅香, 王万录. 聚苯胺的低温比热研究. 物理学报, 2003, 52(4): 947-951. doi: 10.7498/aps.52.947
    [19] 封 伟, 易文辉, 徐友龙, 连彦青, 王晓工, 吉野胜美. 聚苯胺-碳纳米管复合体的制备及其光响应. 物理学报, 2003, 52(5): 1272-1277. doi: 10.7498/aps.52.1272
    [20] 龙云泽, 郑萍, 张志明, 魏志祥, 万梅香, 陈兆甲, 王楠林. 萘磺酸掺杂对纳米管结构聚苯胺低温电阻率的影响. 物理学报, 2002, 51(9): 2090-2095. doi: 10.7498/aps.51.2090
计量
  • 文章访问数:  5676
  • PDF下载量:  776
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-11-10
  • 修回日期:  2012-01-09
  • 刊出日期:  2012-08-05

介孔二氧化硅基导电聚合物复合材料热导率的实验研究

  • 1. 北京科技大学机械工程学院, 北京 100083;
  • 2. 北京科技大学材料学院, 北京 100083
    基金项目: 国家自然科学基金重点项目(批准号: 50836001)和霍英东教育基金资助的课题.

摘要: 本文首先制备并表征了介孔二氧化硅SBA-15、 填充导电聚合物的复合材料PANI/SBA-15和复合材料PPy/SBA-15, 并建立双流计实验台开展了材料压片情况下的热导率研究. 在测量得到复合材料热导率的基础上, 引入当量孔径, 结合测量孔径对 PANI/SBA-15和PPy/SBA-15复合材料热导率随填充量的变化进行了定性分析. 分析表明: PANI/SBA-15和PPy/SBA-15复合材料的热导率比基材SBA-15的热导率大得多; 在相同的测量孔径和当量孔径情况下, PANI/SBA-15复合材料的热导率比PPy/SBA-15复合材料的热导率大; 导电聚合物填充到复合材料孔道内和孔道外都有助于热导率的提高, 填充到孔道内比填充到孔道外对热导率提高的贡献更大.

English Abstract

参考文献 (37)

目录

    /

    返回文章
    返回