搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一类海-气耦合振子模型行波解的渐近解法

石兰芳 欧阳成 莫嘉琪

引用本文:
Citation:

一类海-气耦合振子模型行波解的渐近解法

石兰芳, 欧阳成, 莫嘉琪

The asymptotic solving methodof traveling wave solution to a class of sea-air coupled oscillator model

SHI Lan-Fang, Ouyang Cheng, Mo Jia-Qi
PDF
导出引用
  • 热带海-气振子是一个复杂的自然现象. 本文是对一个海气耦合振子模型, 利用一个待定系数和摄动理论相结合的新方法, 得到了相应模型的行波渐近解.
    The tropical sea-air oscillator is a complicated natural phenomenon. In this paper, based on a sea-air oscillator model, by a new method of combining the undetermined coefficients with the perturbation theory the asymptotic traveling wave solution of the corresponding model is obtained.
    • 基金项目: 国家自然科学基金(批准号: 1107120), 中国科学院战略性先导科技专项-应对气候变化的碳收支认证及相关问题(批准号: XDA01020304), 浙江省自然科学基金(批准号: Y6110502), 江苏省自然科学基金项目(批准号: BK2011042)和安徽高校省级自然科学研究项目(批准号: KJ2011A135)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 1107120), the Strategic Priority Research Program-Climate Change: Carbon Budget and Relevant Issues of the Chinese Academy of Sciences (Grant No. XDA01020304), the Natural Science Foundation of Zhejiang Province, China (Grant No. Y6110502), the Natural Science Foundation of Jiangsu Province (Grant No. BK2011042), and the Natural Science Foundation from the Education Bureau of Anhui Province, China (Grant No. KJ2011A135).
    [1]

    McWilliams J C, Gent P R 1991 J. Atmos. Sci. 35 962

    [2]

    Hu Yinqiao 2002 Introduction to AtmosphericTthermodynamics (in Chinese) (Beijing: Geosci. Press, China)

    [3]

    Philander S G H, Yamagata T, Pacanowski R C 1984 J. Atmos. Sci. 41 604

    [4]

    Gill A E 1985 Coupled Ocean-Atmosphere Models 40 303

    [5]

    Jin F F, Neelin J D 1993 J. Atmos. Sci 50 3523

    [6]

    Jin F F, Neelin J D, Ghil M 1994 Science 264 70

    [7]

    Wang B, Wang Y 1996 J. Climate. 9 1586

    [8]

    Bjerknes J 1966 Tellus 18 820

    [9]

    Cane M A, M黱nich M, Zebiak S E 1990 J. Atmos. Sci. 47 1562

    [10]

    Wang B, Barcilon A, Fang Z 1999 J. Atmos. Sci. 56 5

    [11]

    Wang C 2001 Adv. Atmospheric Sci. 18 674

    [12]

    Lin W T, Mo J Q 2003 Chinese Science Bulletin 48 5

    [13]

    Zhou X C, Lin Y H, Lin W T, Mo J Q 2009 Acta Oceanologica Sin. 28 1

    [14]

    Zhou X C, Lin Y H, Lin W T, Mo J Q 2009 Chin. Phys. B 18 4603

    [15]

    Zhou X C, Lin W T, Lin Y H, Mo J Q 2010 Acta. Phys. Sin. 59 2173 (in Chinese)

    [16]

    Mo J Q, Lin W T, Lin Y H 2009 Chin. Phys. B 18 3624

    [17]

    Mo J Q, Lin W T, Lin Y H 2010 Chin. Geographical Sci. 20 383

    [18]

    Mo J Q, Lin Y H, Lin W T 2010 Acta. Phys. Sin. 59 6701 (in Chinese)

    [19]

    Xie F, Lin W T, Lin Y H, Mo J Q 2011 Chin. Phys. B 20 010208

    [20]

    Barbu L, Morosanu G 2007 Singularly Perturbed Boundary-Value Problems (Basel: Birkhauserm Verlag AG.)

    [21]

    D'Aprile T, Pistoia A 2010 J. Differ. Eqns. 248 556

    [22]

    Ei Shin-Ichiro, Matsuzawa H 2010 Discrete Contin. Dyn. Syst 26 910

    [23]

    Suzuki R 2010 Adv. Differ. Eqns. 15 283

    [24]

    Mo J Q 2009 Science in China, Ser. G 52 1007

    [25]

    Mo J Q, Yao J S, Tang R R Commun. Theor. Phys. 54 27

    [26]

    Mo J Q, Chen X F 2010 Chin. Phys. B 10 100203

    [27]

    Xie F, Lin W T, Lin Y H, Mo J Q 2011 Acta. Phys. Sin. 60 010201 (in Chinese)

    [28]

    Mo J Q, Chen X F 2010 Chin. Phys. B 10 100203

    [29]

    de Jager E M, Jiang Furu 1966 The Theory of Singular Perturbation, (Amsterdam: North- Holland Publishing Co.)

    [30]

    Barbu L, Morosanu G 2007 Singularly Perturbed Boundary-Value Problems (Basel: Birkhauser Verlag AG)

  • [1]

    McWilliams J C, Gent P R 1991 J. Atmos. Sci. 35 962

    [2]

    Hu Yinqiao 2002 Introduction to AtmosphericTthermodynamics (in Chinese) (Beijing: Geosci. Press, China)

    [3]

    Philander S G H, Yamagata T, Pacanowski R C 1984 J. Atmos. Sci. 41 604

    [4]

    Gill A E 1985 Coupled Ocean-Atmosphere Models 40 303

    [5]

    Jin F F, Neelin J D 1993 J. Atmos. Sci 50 3523

    [6]

    Jin F F, Neelin J D, Ghil M 1994 Science 264 70

    [7]

    Wang B, Wang Y 1996 J. Climate. 9 1586

    [8]

    Bjerknes J 1966 Tellus 18 820

    [9]

    Cane M A, M黱nich M, Zebiak S E 1990 J. Atmos. Sci. 47 1562

    [10]

    Wang B, Barcilon A, Fang Z 1999 J. Atmos. Sci. 56 5

    [11]

    Wang C 2001 Adv. Atmospheric Sci. 18 674

    [12]

    Lin W T, Mo J Q 2003 Chinese Science Bulletin 48 5

    [13]

    Zhou X C, Lin Y H, Lin W T, Mo J Q 2009 Acta Oceanologica Sin. 28 1

    [14]

    Zhou X C, Lin Y H, Lin W T, Mo J Q 2009 Chin. Phys. B 18 4603

    [15]

    Zhou X C, Lin W T, Lin Y H, Mo J Q 2010 Acta. Phys. Sin. 59 2173 (in Chinese)

    [16]

    Mo J Q, Lin W T, Lin Y H 2009 Chin. Phys. B 18 3624

    [17]

    Mo J Q, Lin W T, Lin Y H 2010 Chin. Geographical Sci. 20 383

    [18]

    Mo J Q, Lin Y H, Lin W T 2010 Acta. Phys. Sin. 59 6701 (in Chinese)

    [19]

    Xie F, Lin W T, Lin Y H, Mo J Q 2011 Chin. Phys. B 20 010208

    [20]

    Barbu L, Morosanu G 2007 Singularly Perturbed Boundary-Value Problems (Basel: Birkhauserm Verlag AG.)

    [21]

    D'Aprile T, Pistoia A 2010 J. Differ. Eqns. 248 556

    [22]

    Ei Shin-Ichiro, Matsuzawa H 2010 Discrete Contin. Dyn. Syst 26 910

    [23]

    Suzuki R 2010 Adv. Differ. Eqns. 15 283

    [24]

    Mo J Q 2009 Science in China, Ser. G 52 1007

    [25]

    Mo J Q, Yao J S, Tang R R Commun. Theor. Phys. 54 27

    [26]

    Mo J Q, Chen X F 2010 Chin. Phys. B 10 100203

    [27]

    Xie F, Lin W T, Lin Y H, Mo J Q 2011 Acta. Phys. Sin. 60 010201 (in Chinese)

    [28]

    Mo J Q, Chen X F 2010 Chin. Phys. B 10 100203

    [29]

    de Jager E M, Jiang Furu 1966 The Theory of Singular Perturbation, (Amsterdam: North- Holland Publishing Co.)

    [30]

    Barbu L, Morosanu G 2007 Singularly Perturbed Boundary-Value Problems (Basel: Birkhauser Verlag AG)

  • [1] 石兰芳, 陈贤峰, 韩祥临, 许永红, 莫嘉琪. 一类Fermi气体在非线性扰动机制中轨线的渐近表示. 物理学报, 2014, 63(6): 060204. doi: 10.7498/aps.63.060204
    [2] 韩祥临, 石兰芳, 莫嘉琪. 一类海-气振子模型的微扰解. 物理学报, 2014, 63(6): 060205. doi: 10.7498/aps.63.060205
    [3] 韩祥临, 林万涛, 许永红, 莫嘉琪. 广义Duffing扰动振子随机共振机理的渐近解. 物理学报, 2014, 63(17): 170204. doi: 10.7498/aps.63.170204
    [4] 龚振兴, 李友荣, 彭岚, 吴双应, 石万元. 旋转环形浅液池内双组分溶液耦合热-溶质毛细对流渐近解. 物理学报, 2013, 62(4): 040201. doi: 10.7498/aps.62.040201
    [5] 陈丽娟, 鲁世平. 零维气候系统非线性模式的周期解问题. 物理学报, 2013, 62(20): 200201. doi: 10.7498/aps.62.200201
    [6] 欧阳成, 林万涛, 程荣军, 莫嘉琪. 一类厄尔尼诺海-气时滞振子的渐近解. 物理学报, 2013, 62(6): 060201. doi: 10.7498/aps.62.060201
    [7] 韩祥临, 杜增吉, 莫嘉琪. 一类厄尔尼诺/拉尼娜-南方涛动海-气振子的奇摄动解. 物理学报, 2012, 61(20): 200208. doi: 10.7498/aps.61.200208
    [8] 朱敏, 林万涛, 林一骅, 莫嘉琪. 一类厄尔尼诺时滞海-气振子摄动解. 物理学报, 2011, 60(3): 030204. doi: 10.7498/aps.60.030204
    [9] 莫嘉琪, 林万涛, 林一骅. 厄尔尼诺/拉尼娜-南方涛动机制时滞海-气振子的渐近解. 物理学报, 2011, 60(8): 080202. doi: 10.7498/aps.60.080202
    [10] 温朝晖, 莫嘉琪. 广义(3+1)维非线性Burgers系统孤波级数解. 物理学报, 2010, 59(12): 8311-8315. doi: 10.7498/aps.59.8311
    [11] 莫嘉琪, 林一骅, 林万涛. 海-气振子厄尔尼诺-南方涛动模型的近似解. 物理学报, 2010, 59(10): 6707-6711. doi: 10.7498/aps.59.6707
    [12] 莫嘉琪, 林一骅, 林万涛. 一个全球气候非线性振荡模型的近似解. 物理学报, 2009, 58(10): 6692-6695. doi: 10.7498/aps.58.6692
    [13] 曹小群, 张卫民, 宋君强, 朱小谦, 王舒畅. 海-气振子系统中未知参数的MCMC方法识别. 物理学报, 2009, 58(9): 6050-6057. doi: 10.7498/aps.58.6050
    [14] 莫嘉琪, 林万涛. 副热带圈和赤道太平洋年代际变更的海-气振子模型解的同伦映射方法. 物理学报, 2007, 56(10): 5565-5568. doi: 10.7498/aps.56.5565
    [15] 莫嘉琪, 张伟江, 何 铭. 强非线性发展方程孤波近似解. 物理学报, 2007, 56(4): 1843-1846. doi: 10.7498/aps.56.1843
    [16] 莫嘉琪, 王 辉, 林万涛, 林一骅. 赤道东太平洋SST的海-气振子模型. 物理学报, 2006, 55(1): 6-9. doi: 10.7498/aps.55.6
    [17] 莫嘉琪, 王 辉, 林万涛. 厄尔尼诺-南方涛动时滞海-气振子耦合模型. 物理学报, 2006, 55(7): 3229-3232. doi: 10.7498/aps.55.3229
    [18] 莫嘉琪, 林万涛, 王 辉. 一类厄尔尼诺海-气振子机理的摄动解. 物理学报, 2005, 54(9): 3967-3970. doi: 10.7498/aps.54.3967
    [19] 莫嘉琪, 林一骅, 林万涛. 热带海-气耦合振子的摄动解. 物理学报, 2005, 54(9): 3971-3974. doi: 10.7498/aps.54.3971
    [20] 莫嘉琪, 林万涛. ENSO非线性模型的摄动解. 物理学报, 2004, 53(4): 996-998. doi: 10.7498/aps.53.996
计量
  • 文章访问数:  4612
  • PDF下载量:  643
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-09-24
  • 修回日期:  2011-11-02
  • 刊出日期:  2012-06-05

一类海-气耦合振子模型行波解的渐近解法

  • 1. 南京信息工程大学数理学院, 南京 210044;
  • 2. 湖州师范学院理学院, 湖州 313000;
  • 3. 安徽师范大学数学系, 芜湖 241003
    基金项目: 国家自然科学基金(批准号: 1107120), 中国科学院战略性先导科技专项-应对气候变化的碳收支认证及相关问题(批准号: XDA01020304), 浙江省自然科学基金(批准号: Y6110502), 江苏省自然科学基金项目(批准号: BK2011042)和安徽高校省级自然科学研究项目(批准号: KJ2011A135)资助的课题.

摘要: 热带海-气振子是一个复杂的自然现象. 本文是对一个海气耦合振子模型, 利用一个待定系数和摄动理论相结合的新方法, 得到了相应模型的行波渐近解.

English Abstract

参考文献 (30)

目录

    /

    返回文章
    返回