搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Pt插层对铁磁/反铁磁界面交换耦合的影响

王一军 刘洋 于广华

引用本文:
Citation:

Pt插层对铁磁/反铁磁界面交换耦合的影响

王一军, 刘洋, 于广华

Effect of Pt spacers on interface exchange coupling in ferromagnetic/antiferromagnetic bilayers

Wang Yi-Jun, Liu Yang, Yu Guang-Hua
PDF
导出引用
  • 在铁磁层(FM)/反铁磁层(FeMn)耦合体系中插入Pt 插层或对靠近FM/FeMn界面处的FeMn掺杂Pt元素,研究了体系的交换偏置场 Hex及矫顽力Hc随Pt插层深度 dPt与Pt掺杂层厚度tPtFeMn的变化关系. 实验结果表明,引入Pt插层后NiFe/FeMn(dPt)/Pt/FeMn体系的未补偿磁矩(UCS)的数量得到很大的提高,从而对Hex与Hc 起到增强的作用; 同时, 从实验结果可以推测FeMn层内部UCS的分布深度约为1.3 nm. 另外,对靠近FM/FeMn界面处的FeMn掺杂Pt元素,发现掺入Pt元素后体系的Hex 得到有效增强, 这是因为掺入Pt元素后体系UCS的数量也得到很大的提高.
    By inserting a Pt spacer between ferromagnetic (FM)/antiferromagnetic (FeMn) coumpling systems or by doping Pt element in the AFM layer, the depth dependence of Pt spacer and the thickness dependence of Pt doping layer on exchange bias (Hex) and coercivity (Hc) are investigated. The results indicate that the number of uncompensated spin moments (UCSs) of NiFe/FeMn(dPt)/Pt/FeMn increases as a result of inserting Pt spacer, which enhances Hex and Hc of the system. Also, the distribution depth about 1.3 nm of UCS of FeMn in NiFe/FeMn system is inferred. Besides, by doping Pt element in FeMn near the FM/FeMn interlayer, we find that the Hex of the system is enhanced efficiently, which is caused by the huge increase of the number of UCSs in the system.
    • 基金项目: 国家自然科学基金(批准号: 51071023, 50831002)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51071023, 50831002).
    [1]

    Dieny B 1994 J. Magn. Magn. Mater. 136 335

    [2]

    Parkin S S P, Jiang X, Kaiser C, Panchula A, Roche K, Samant M 2003 Proc. IEEE 91 661

    [3]

    Park B G, Wunderlich J, Martí X, Holý V, Kurosaki Y, Yamada M, Yamamoto H, Nishide A, Hayakawa J, Takahashi H, Shick A B, Jungwirth T 2011 Nature Mater. 10 347

    [4]

    Meiklejohn W H, Bean C P 1956 Phys. Rev. 102 1413

    [5]

    Mauri D, Siegmann H C, Bagus P S, Kay E 1987 J. Appl. Phys. 62 3047

    [6]

    Malozemff A P 1987 Phys. Rev. B 35 3679

    [7]

    Koon N C 1997 Phys. Rev. Lett. 78 4865

    [8]

    Nowak U, Usadel K D, Keller J, Miltényi P, Beschoten B, Güntherodt G 2002 Phys. Rev. B 66 014430

    [9]

    Keller J, Miltényi P, Beschoten B, Güntherodt G, Nowak U, Usadel K D 2002 Phys. Rev. B 66 014431

    [10]

    Nogués J, Schuller I K 1999 J. Magn. Magn. Mater. 192 203

    [11]

    Takano K, Kodama R H, Berkowitz A E, Cao W, Thomas G 1997 Phys. Rev. Lett. 79 1130

    [12]

    Gloanec M, Rioual S, Lescop B, Zuberek R, Szymczak R, Aleshkevych P, Rouvellou B 2010 Phys. Rev. B 82 144433

    [13]

    Paul A 2010 Appl. Phys. Lett. 97 032505

    [14]

    Nolting F, Scholl A, Stöhr J, Seo J W, Fompeyrine J, Siegwart H, Locquet J P, Anders S, Lüning J, Fullerton E E, Toney M F, Scheinfein M R, Padmore H A 2000 Nature 405 767

    [15]

    Ohldag H, Scholl A, Nolting F, Arenholz E, Maat S, Young A T, Carey M, Stöhr J 2003 Phys. Rev. Lett. 91 017203

    [16]

    Morales R, Li Z P, Olamit J, Liu K, Alameda J M, Schuller I K 2009 Phys. Rev. Lett. 102 097201

    [17]

    Mishra S K, Radu F, Valencia S, Schmitz D, Schierle E, Dürr H A, Eberhardt W 2010 Phys. Rev. B 81 212404

    [18]

    Gökemeijer N J, Ambrose T, Chien C L 1997 Phys. Rev. Lett. 79 4270

    [19]

    Lechevallier L, Zarefy A, Lardé R, Chiron H, Le Breton J M, Baltz V, Rodmacq B, Dieny B 2009 Phys. Rev. B 79 174434

    [20]

    Ali M, Marrows C H, Hickey B J 2008 Phys. Rev. B 77 134401

    [21]

    Fu Y Q, Liu Y, Jin C, Yu G H 2009 Acta Phys. Sin. 58 7977 (in Chinese) [付艳强,刘洋,金川,于广华 2009 物理学报 58 7977]

    [22]

    Urazhdin S, Tabor P, Lim W L 2008 Phys. Rev. B 78 052403

    [23]

    Ma M, Cai L, Wang X F, Hu J G 2007 Acta Phys. Sin. 56 529 (in Chinese) [马梅,蔡蕾,王兴福, 胡经国 2007 物理学报 56 529]

    [24]

    Liu Y, Jin C, Fu Y Q, Teng J, Liu M H, Liu Z Y, Yu G H 2008 J. Phys. D 41 205006

  • [1]

    Dieny B 1994 J. Magn. Magn. Mater. 136 335

    [2]

    Parkin S S P, Jiang X, Kaiser C, Panchula A, Roche K, Samant M 2003 Proc. IEEE 91 661

    [3]

    Park B G, Wunderlich J, Martí X, Holý V, Kurosaki Y, Yamada M, Yamamoto H, Nishide A, Hayakawa J, Takahashi H, Shick A B, Jungwirth T 2011 Nature Mater. 10 347

    [4]

    Meiklejohn W H, Bean C P 1956 Phys. Rev. 102 1413

    [5]

    Mauri D, Siegmann H C, Bagus P S, Kay E 1987 J. Appl. Phys. 62 3047

    [6]

    Malozemff A P 1987 Phys. Rev. B 35 3679

    [7]

    Koon N C 1997 Phys. Rev. Lett. 78 4865

    [8]

    Nowak U, Usadel K D, Keller J, Miltényi P, Beschoten B, Güntherodt G 2002 Phys. Rev. B 66 014430

    [9]

    Keller J, Miltényi P, Beschoten B, Güntherodt G, Nowak U, Usadel K D 2002 Phys. Rev. B 66 014431

    [10]

    Nogués J, Schuller I K 1999 J. Magn. Magn. Mater. 192 203

    [11]

    Takano K, Kodama R H, Berkowitz A E, Cao W, Thomas G 1997 Phys. Rev. Lett. 79 1130

    [12]

    Gloanec M, Rioual S, Lescop B, Zuberek R, Szymczak R, Aleshkevych P, Rouvellou B 2010 Phys. Rev. B 82 144433

    [13]

    Paul A 2010 Appl. Phys. Lett. 97 032505

    [14]

    Nolting F, Scholl A, Stöhr J, Seo J W, Fompeyrine J, Siegwart H, Locquet J P, Anders S, Lüning J, Fullerton E E, Toney M F, Scheinfein M R, Padmore H A 2000 Nature 405 767

    [15]

    Ohldag H, Scholl A, Nolting F, Arenholz E, Maat S, Young A T, Carey M, Stöhr J 2003 Phys. Rev. Lett. 91 017203

    [16]

    Morales R, Li Z P, Olamit J, Liu K, Alameda J M, Schuller I K 2009 Phys. Rev. Lett. 102 097201

    [17]

    Mishra S K, Radu F, Valencia S, Schmitz D, Schierle E, Dürr H A, Eberhardt W 2010 Phys. Rev. B 81 212404

    [18]

    Gökemeijer N J, Ambrose T, Chien C L 1997 Phys. Rev. Lett. 79 4270

    [19]

    Lechevallier L, Zarefy A, Lardé R, Chiron H, Le Breton J M, Baltz V, Rodmacq B, Dieny B 2009 Phys. Rev. B 79 174434

    [20]

    Ali M, Marrows C H, Hickey B J 2008 Phys. Rev. B 77 134401

    [21]

    Fu Y Q, Liu Y, Jin C, Yu G H 2009 Acta Phys. Sin. 58 7977 (in Chinese) [付艳强,刘洋,金川,于广华 2009 物理学报 58 7977]

    [22]

    Urazhdin S, Tabor P, Lim W L 2008 Phys. Rev. B 78 052403

    [23]

    Ma M, Cai L, Wang X F, Hu J G 2007 Acta Phys. Sin. 56 529 (in Chinese) [马梅,蔡蕾,王兴福, 胡经国 2007 物理学报 56 529]

    [24]

    Liu Y, Jin C, Fu Y Q, Teng J, Liu M H, Liu Z Y, Yu G H 2008 J. Phys. D 41 205006

  • [1] 俱海浪, 向萍萍, 王伟, 李宝河. MgO/Pt界面对增强Co/Ni多层膜垂直磁各向异性及热稳定性的研究. 物理学报, 2015, 64(19): 197501. doi: 10.7498/aps.64.197501
    [2] 郑勇林, 王晓茜, 葛泽玲, 郭红力, 严刚峰, 戴松晖, 朱晓玲, 田晓滨. 铁磁非铁磁夹层中电子自旋波的传输及应用. 物理学报, 2013, 62(22): 227701. doi: 10.7498/aps.62.227701
    [3] 刘娜, 王海, 朱涛. CoFeB/Pt多层膜的垂直磁各向异性研究. 物理学报, 2012, 61(16): 167504. doi: 10.7498/aps.61.167504
    [4] 邓娅, 赵国平, 薄鸟. 交换弹簧磁性多层膜的磁矩取向及磁滞回线的解析研究. 物理学报, 2011, 60(3): 037502. doi: 10.7498/aps.60.037502
    [5] 顾文娟, 潘靖, 杜薇, 胡经国. 铁磁共振法测磁各向异性. 物理学报, 2011, 60(5): 057601. doi: 10.7498/aps.60.057601
    [6] 李安华, 赖彬, 王会杰, 朱明刚, 李卫. Pr2Fe14(C,B)/α-(Fe,Co)型纳米晶复合磁体的结构与磁性. 物理学报, 2011, 60(2): 027501. doi: 10.7498/aps.60.027501
    [7] 付艳强, 刘洋, 金川, 于广华. Pt插层对Co/FeMn界面的影响. 物理学报, 2009, 58(11): 7977-7982. doi: 10.7498/aps.58.7977
    [8] 敖 琪, 张瓦利, 张 熠, 吴建生. Nd-Fe-B/FeCo多层纳米复合膜的结构和磁性. 物理学报, 2007, 56(2): 1135-1140. doi: 10.7498/aps.56.1135
    [9] 翟中海, 滕 蛟, 李宝河, 王立锦, 于广华, 朱逢吾. 具有垂直各向异性(Pt/Co)n/FeMn多层膜的交换偏置. 物理学报, 2006, 55(4): 2064-2068. doi: 10.7498/aps.55.2064
    [10] 史慧刚, 司明苏, 薛德胜. 段化(A/B)m复合纳米线阵列的矫顽力机理. 物理学报, 2005, 54(7): 3402-3407. doi: 10.7498/aps.54.3402
    [11] 敖 琪, 张瓦利, 张 熠, 吴建生. Nd28Fe66B6/Fe50Co50双层纳米复合膜的结构和磁性. 物理学报, 2005, 54(10): 4889-4893. doi: 10.7498/aps.54.4889
    [12] 张昌文, 李 华, 董建敏, 王永娟, 潘凤春, 郭永权, 李 卫. 化合物SmCo5的电子结构、自旋和轨道磁矩及其交换作用分析. 物理学报, 2005, 54(4): 1814-1820. doi: 10.7498/aps.54.1814
    [13] 姜宏伟, 李明华, 王艾玲, 郑鹉. NiFe/FeMn双层膜的交换耦合. 物理学报, 2004, 53(4): 1232-1235. doi: 10.7498/aps.53.1232
    [14] 倪 经, 蔡建旺, 赵见高, 颜世申, 梅良模, 朱世富. Fe/Si多层膜的层间耦合与界面扩散. 物理学报, 2004, 53(11): 3920-3923. doi: 10.7498/aps.53.3920
    [15] 林应斌, 赖 恒, 黄志高, 都有为. MnBi磁性多层膜磁光科尔效应的数值模拟. 物理学报, 2004, 53(2): 606-613. doi: 10.7498/aps.53.606
    [16] 冯 倩, 黄志高, 都有为. 磁性多层膜磁特性的表面效应. 物理学报, 2003, 52(11): 2906-2911. doi: 10.7498/aps.52.2906
    [17] 刘先松, 钟伟, 杨森, 姜洪英, 顾本喜, 都有为. 纳米晶复合SrFe12O19γ-Fe2O3永磁铁氧体的制备和交换耦合作用. 物理学报, 2002, 51(5): 1128-1132. doi: 10.7498/aps.51.1128
    [18] 朱明刚, 李卫, 董生智, 李岫梅. Ga替代对纳米晶Nd(Fe,Co)B黏结磁体磁性能的影响. 物理学报, 2001, 50(8): 1600-1604. doi: 10.7498/aps.50.1600
    [19] 马平平, 郑 鹉, 王艾玲, 王荫君, 韩宝善. Pt1-xCux/Co多层膜的结构和磁性. 物理学报, 1998, 47(2): 325-332. doi: 10.7498/aps.47.325
    [20] 杨国林, 李伯臧, 李列明, 孙刚, 吴建华, 蒲富恪. 磁性多层膜层间交换耦合的自由电子模型研究. 物理学报, 1996, 45(5): 869-884. doi: 10.7498/aps.45.869
计量
  • 文章访问数:  4097
  • PDF下载量:  427
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-12-13
  • 修回日期:  2012-01-07
  • 刊出日期:  2012-08-05

Pt插层对铁磁/反铁磁界面交换耦合的影响

  • 1. 北京科技大学材料物理与化学系, 北京 100083
    基金项目: 国家自然科学基金(批准号: 51071023, 50831002)资助的课题.

摘要: 在铁磁层(FM)/反铁磁层(FeMn)耦合体系中插入Pt 插层或对靠近FM/FeMn界面处的FeMn掺杂Pt元素,研究了体系的交换偏置场 Hex及矫顽力Hc随Pt插层深度 dPt与Pt掺杂层厚度tPtFeMn的变化关系. 实验结果表明,引入Pt插层后NiFe/FeMn(dPt)/Pt/FeMn体系的未补偿磁矩(UCS)的数量得到很大的提高,从而对Hex与Hc 起到增强的作用; 同时, 从实验结果可以推测FeMn层内部UCS的分布深度约为1.3 nm. 另外,对靠近FM/FeMn界面处的FeMn掺杂Pt元素,发现掺入Pt元素后体系的Hex 得到有效增强, 这是因为掺入Pt元素后体系UCS的数量也得到很大的提高.

English Abstract

参考文献 (24)

目录

    /

    返回文章
    返回