搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

畴壁系统中的非厄米趋肤效应

邓天舒

引用本文:
Citation:

畴壁系统中的非厄米趋肤效应

邓天舒

Non-Hermitian skin effect in a domain-wall system

Deng Tian-Shu
PDF
HTML
导出引用
  • 非厄米趋肤效应是近几年非厄米物理研究领域中的热点问题, 它揭示了非厄米系统中体态波函数和能谱计算会敏感依赖于边界条件的新奇现象. 人们提出广义布里渊区的概念用以刻画非厄米系统中的体态波函数和能带性质. 基于广义布里渊区计算的非布洛赫拓扑数可以重新构建非厄米拓扑体边对应关系. 然而, 过去关于非厄米趋肤效应的讨论主要针对开放边界条件, 如果采用畴壁边界条件, 广义布里渊区和非布洛赫拓扑数的计算都需要重新考虑. 本文综述了近几年关于畴壁边界条件下非厄米趋肤效应的若干研究工作, 首先从一般的一维非厄米单带模型出发, 推导广义布里渊区方程的一般形式; 然后回顾了非厄米SSH (Su-Schieffer-Heeger)模型中广义布里渊区和非布洛赫拓扑数的计算; 最后在一维光量子行走的系统中, 介绍了实验上非厄米趋肤效应的实现和非厄米拓扑边缘态的探测.
    The non-Hermitian skin effect is one of the most striking features in non-Hermitian physics. It reveals a novel phenomenon in a non-Hermitian system that the bulk wave function and energy spectrum are sensitively dependent on the boundary conditions. The concept of generalized Brillouin zones has been proposed to characterize bulk wave functions in such systems . Based on generalized Brillouin zones, non-Bloch topological invariants can reconstruct the non-Hermitian bulk-edge correspondence. Previous discussion of the non-Hermitian skin effect mainly focused on open boundary conditions, and the calculation of generalized Brillouin zones needs to be reconsidered under domain-wall boundary conditions. The paper introduces the related researches of the non-Hermitian skin effect in domain-wall systems, including the general form of the generalized Brillouin zone equation in a one-dimensional single-band model, non-Bloch topological invariants in non-Hermitian SSH (Su-Schieffer-Heeger) model, and the experimental realization of the non-Hermitian skin effect in one-dimensional quantum walk system.
      Corresponding author: Deng Tian-Shu, shu500@mail.tsinghua.edu.cn
    [1]

    Breuer H P, Petruccione F 2006 The Theory of Open Quantum Systems (Oxford: Oxford University Press)

    [2]

    Lindblad G 1976 Commun. Math. Phys. 48 119Google Scholar

    [3]

    Dalibard J, Castin Y, Molmer K 1992 Phys. Rev. Lett. 68 580Google Scholar

    [4]

    Carmichael H J 1993 Phys. Rev. Lett. 70 2273Google Scholar

    [5]

    Prosen T 2010 J. Stat. Mech. P 07020Google Scholar

    [6]

    Prosen T 2008 New J. Phys. 10 043026Google Scholar

    [7]

    Zhou Y N, Mao L, Zhai H 2021 Phys. Rev. Res. 3 043060Google Scholar

    [8]

    Shen H, Zhen B, Fu L 2018 Phys. Rev. Lett. 120 146402Google Scholar

    [9]

    Gong Z, Ashida Y, Kawabata K, Takasan K, Higashikawa S, Ueda M 2018 Phys. Rev. X 8 031079Google Scholar

    [10]

    Kawabata K, Shiozaki K, Ueda M, Sato M 2019 Phys. Rev. X 9 041015

    [11]

    Ghatak A, Das T 2019 J. Phys. Condens. Matter 31 263001Google Scholar

    [12]

    Bergholtz E J, Budich J C, Kunst F K 2021 Rev. Mod. Phys. 93 015005Google Scholar

    [13]

    Zhen B, Hsu C W, Igarashi Y, et al. 2015 Nature 525 354Google Scholar

    [14]

    Poli C, Bellec M, Kuhl U, Mortessagne F, Schomerus H 2015 Nat. Commun. 6 6710Google Scholar

    [15]

    Zhu W, Fang X, Li D, Sun Y, Li Y, Jing Y, Chen H 2018 Phys. Rev. Lett. 121 124501Google Scholar

    [16]

    Li J, Harter A K, Liu J, Melo L D, Joglekar Y N, Luo L 2019 Nat. Commun. 10 855Google Scholar

    [17]

    Xiao L, Deng T, Wang K, Zhu G, Wang Z, Yi W, Xue P 2020 Nat. Phys. 16 761Google Scholar

    [18]

    Ding L, Shi K, Zhang Q, Shen D, Zhang X, Zhang W 2021 Phys. Rev. Lett. 126 083604Google Scholar

    [19]

    Zou D, Chen T, He W, Bao J, Lee C H, Sun H, Zhang X 2021 Nat. Commun. 12 7201Google Scholar

    [20]

    Lee T E 2016 Phys. Rev. Lett. 116 133903Google Scholar

    [21]

    Yao S, Wang Z 2018 Phys. Rev. Lett. 121 086803Google Scholar

    [22]

    Yao S, Song F, Wang Z 2018 Phys. Rev. Lett. 121 136802Google Scholar

    [23]

    Kunst F K, Edvardsson E, Budich J C, Bergholtz E J 2018 Phys. Rev. Lett. 121 026808Google Scholar

    [24]

    Lee C H, Thomale R 2019 Phys. Rev. B 99 201103(RGoogle Scholar

    [25]

    胡渝民, 宋飞, 汪忠 2021 物理学报 70 230307Google Scholar

    Hu Y M, Song F, Wang Z 2021 Acta Phys. Sin. 70 230307Google Scholar

    [26]

    Yokomizo K, Murakami S 2019 Phys. Rev. Lett. 123 066404Google Scholar

    [27]

    Song F, Yao S, Wang Z 2019 Phys. Rev. Lett. 123 170401Google Scholar

    [28]

    Jiang H, Lang L J, Yang C, Zhu S L, Chen S 2019 Phys. Rev. B 100 054301Google Scholar

    [29]

    Okuma N, Kawabata K, Shiozaki K, Sato M 2020 Phys. Rev. Lett. 124 086801Google Scholar

    [30]

    Zhang K, Yang Z, Fang C 2020 Phys. Rev. Lett. 125 126402Google Scholar

    [31]

    Yang Z, Zhang K, Fang C, Hu J 2020 Phys. Rev. Lett. 125 226402Google Scholar

    [32]

    Mao L, Deng T, Zhang P 2021 Phys. Rev. B 104 125435Google Scholar

    [33]

    Sun X Q, Zhu P, Hughes T L 2021 Phys. Rev. Lett. 127 066401Google Scholar

    [34]

    Liu C H, Zhang K, Yang Z, Chen S 2020 Phys. Rev. Res. 2 043167Google Scholar

    [35]

    Li L, Lee C H, Mu S, Gong J 2020 Nat. Commun. 11 5491Google Scholar

    [36]

    Claes J, Hughes T L 2021 Phys. Rev. B 103 L140201Google Scholar

    [37]

    Xue W T, Li M R, Hu Y M, Song F, Wang Z 2021 Phys. Rev. B 103 L241408Google Scholar

    [38]

    Okuma N, Sato M 2021 Phys. Rev. B 103 085428Google Scholar

    [39]

    Guo C X, Liu C H, Zhao X M, Liu Y, Chen S 2021 Phys. Rev. Lett. 127 116801Google Scholar

    [40]

    Xue W T, Hu Y M, Song F, Wang Z 2022 Phys. Rev. Lett. 128 120401Google Scholar

    [41]

    Lv C, Zhang R, Zhai Z, Zhou Q 2022 Nat. Commun. 13 2184Google Scholar

    [42]

    Zhou T G, Zhou Y N, Zhang P, Zhai H 2022 Phys. Rev. Research 4 L022039Google Scholar

    [43]

    Zhang K, Yang Z, Fang C 2022 Nat. Commun. 13 2496Google Scholar

    [44]

    Deng T S, Yi W 2019 Phys. Rev. B 100 035102Google Scholar

    [45]

    Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045Google Scholar

    [46]

    Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057Google Scholar

    [47]

    Chiu C K, Teo J C Y, Schnyder A P, Ryu S 2016 Rev. Mod. Phys. 88 035005Google Scholar

    [48]

    Yin C, Jiang H, Li L, Lü R, Chen S 2018 Phys. Rev. A 97 052115Google Scholar

    [49]

    Lieu S 2018 Phys. Rev. B 97 045106Google Scholar

    [50]

    Shenvi N, Kempe J, Birgitta Whaley K 2003 Phys. Rev. A 62 052307Google Scholar

    [51]

    Ambainis A 2003 Int. J. Quantum. Inform. 1 507Google Scholar

    [52]

    Kitagawa T, Rudner M S, Berg E, Demler E 2010 Phys. Rev. A 82 033429Google Scholar

    [53]

    Cardano F, Maffei F, Massa F, et al. 2016 Nat. Commun. 7 11439Google Scholar

    [54]

    Flurin E, Ramasesh V V, Hacohen-Gourgy S, Martin L S, Yao N Y, Siddiqi I 2017 Phys. Rev. X 7 031023Google Scholar

    [55]

    Cardano F, DErrico A, Dauphin A, et al. 2017 Nat. Commun. 8 15516Google Scholar

    [56]

    Xiao L, Zhan X, Bian Z H, et al. 2017 Nat. Phys. 13 1117Google Scholar

    [57]

    Zhan X, Xiao L, Bian Z, et al. 2017 Phys. Rev. Lett. 119 130501Google Scholar

    [58]

    Wang K K, Qiu X, Xiao L, et al. 2019 Nat. Commun. 10 2293Google Scholar

    [59]

    Asbóth J K, Obuse H 2013 Phys. Rev. B 88 121406Google Scholar

    [60]

    Asbóth J K, Tarasinski B, Delplace P 2014 Phys. Rev. B 90 125143Google Scholar

    [61]

    Yao S, Yan Z, Wang Z 2017 Phys. Rev. B 96 195303Google Scholar

    [62]

    Roy R, Harper F 2017 Phys. Rev. B 96 155118Google Scholar

    [63]

    Rudner M S, Lindner N H 2020 Nat. Rev. Phys. 2 229Google Scholar

  • 图 1  畴壁边界条件下的一维单带模型示意图, 格点首尾相连形成环状结构. 跃迁距离最远为m

    Fig. 1.  Illustration of single-band lattice model under domain-wall configuration. The hopping distance is m at most

    图 2  波函数在实空间的分布图. 其中$m=2$, $t_{{\rm{M}}, 1}=t_{{\rm{M}}, 2}= $$ t_{{\rm{M}}, -1}=t_{{\rm{M}}, -2}=1$, $t_{{\rm{L}}, -2}=4$, $t_{{\rm{L}}, -1}=-1$, $t_{{\rm{L}}, 1}=3$, $t_{{\rm{L}}, 2}=2$, $t_{{\rm{R}}, -2}=2$, $t_{{\rm{R}}, -1}=1$, $t_{{\rm{R}}, 1}=3$, $t_{{\rm{R}}, 2}=-2$, $N=30$

    Fig. 2.  Wave-function distribution in real space. Here, $m=2$, $t_{{\rm{M}}, 1}=t_{{\rm{M}}, 2}=t_{{\rm{M}}, -1}=t_{{\rm{M}}, -2}=1$, $t_{{\rm{L}}, -2}=4$, $t_{{\rm{L}}, -1}=-1$, $t_{{\rm{L}}, 1}=3$, $t_{{\rm{L}}, 2}=2$, $t_{{\rm{R}}, -2}=2$, $t_{{\rm{R}}, -1}=1$, $t_{{\rm{R}}, 1}=3$, $t_{{\rm{R}}, 2}=-2$, $N=30$

    图 3  畴壁边界条件下的非厄米SSH模型. 在左边(右边)区域元胞内部a子格到b子格的跃迁是$t^{{\rm{L}}({\rm{R}})}_1-\gamma/2$, 而元胞内部b子格到a子格的是$t^{{\rm{L}}({\rm{R}})}_1+\gamma/2$. 此外, 畴壁两边不同区域具有相同的$t_2$$\gamma$[44]

    Fig. 3.  A non-Hermitian SSH model with two bulks. For left (right) bulk, the intra-cell hopping from a-site to b-site is $t_1^{{\rm{L}}({\rm{R}})}-\gamma/2$ while the intra-cell hopping from b-site to a-site is $t_1^{{\rm{L}}({\rm{R}})}+\gamma/2$. Also, different bulks holds same $t_2$ and $\gamma$[44]

    图 4  (a), (b)体态波函数的理论(黑线)和数值(绿点)结果, (a)图的链长为$N=20$, (b) 图的链长为$N=40$. (c) 复平面内$\beta_{{\rm{L}}, 1}$(红色点划线)和$\beta_{{\rm{L}}, 2}$(蓝色虚线)表示的左链的非布洛赫布里渊区. (d) 复平面内$\beta_{{\rm{R}}, 1}$(红色点划线)和$\beta_{{\rm{R}}, 2}$(蓝色虚线)表示的右链的非布洛赫布里渊区. 在图(c)和图(d)中, 取热力学极限$N\rightarrow \infty$并且用黑色实线画出了布洛赫布里渊区作为对比. 在所有的子图中, 选取的参数为$t_1^{\rm{L}}=-t_2$, $t_1^{\rm{R}}=1.5 t_2$, $\gamma=1.33 t_2$[44]

    Fig. 4.  (a), (b) Theoretical (black lines) and numerical (green dots) results of bulk-state energy spectrum. The length of chain is $N=20$ for panel (a) and $N=40$ for panel (b). (c) Non-Bloch Brillouin zones of the left bulk, represented by $\beta_{{\rm{L}}, 1}$ (red dash-dotted line) and $\beta_{{\rm{L}}, 2}$(blue dashed line) on the complex plane. (d) Non-Bloch Brillouin zones of the right bulk, represented by $\beta_{{\rm{R}}, 1}$ (red dash-dotted line) and $\beta_{{\rm{R}}, 2}$(blue dashed line) on the complex plane. In panels (c) and (d), we take the thermodynamic limit $N\rightarrow \infty$, and we also plot the Bloch Brillouin zones with black solid lines for comparison. For all subplots, we take $t_1^{\rm{L}}=-t_2$, $t_1^{\rm{R}}=1.5 t_2$, $\gamma=1.33 t_2$[44]

    图 5  (a)—(c)颜色栏在$t_1^{\rm{L}}$-$t_1^{\rm{R}}$平面能谱绝对值的最小值. 这里选取$N=40$. 图(a)中$\gamma=0$, 图(b)中$\gamma=0.67 \;t_2$, 图(c)中$\gamma=1.33 \;t_2$. 黑色线对应参数$t_1^{\rm{L}}=t_1^{\rm{R}}$, 此时畴壁构型会退化回周期边界条件的均匀格点模型. 玫红色的虚线对应的参数为$t_1^{\rm{L}}=-t_1^{\rm{R}}$. 图(a)—(c)里的红色点划线给出了用在图(d)—(f)里的参数, 即$t_1^{\rm{R}}=1.5\; t_2$. (d)—(f)能谱绝对值(上部)和拓扑数(下部). 图中下部给出了左链的布洛赫拓扑数$\nu_{\rm{L}}$(玫红虚线) 和右链的非布洛赫拓扑数$\nu_{\rm{R}}$(黑色虚线), 以及左链的非布洛赫拓扑数$\tilde{\nu}_{\rm{L}}$(红色实线)和右链的非布洛赫拓扑数$\tilde{\nu}_{\rm{R}}$(蓝色实线)[44]

    Fig. 5.  (a)–(c) Contour plots of absolute values of the energy-spectrum minimum on the $t_1^{\rm{L}}$-$t_1^{\rm{R}}$ plane. Here, we take $N=40$. We also take $\gamma=0$ for (a), $\gamma=0.67 \;t_2$ for (b) and $\gamma=1.33 \;t_2$ for (c). The black solid lines are given by $t_1^{\rm{L}}=t_1^{\rm{R}}$, where the domain-wall configuration is reduced to single homogeneous bulk with a periodic boundary condition. The magenta dashed lines are given by $t_1^{\rm{L}}=-t_1^{\rm{R}}$. The red dashed-dotted line in panels (a)–(c) correspond to parameters we use in panels (d)–(f) with $t_1^{\rm{R}}=1.5 \;t_2$. (d)–(f) The absolute values of the energy spectrum (upper panels) and various winding numbers (lower panels). In the lower panel, we show the Bloch winding numbers for the left bulk $\nu_{\rm{L}}$ (magenta dashed lines) and the right bulk $\nu_{\rm{R}}$ (black dashed lines), as well as non-Bloch winding numbers for the left bulk $\tilde{\nu}_{\rm{L}}$ (red solid lines) and the right bulk $\tilde{\nu}_{\rm{R}}$ (blue solid lines)[44]

    图 6  具有非厄米趋肤效应的量子行走 (a) 畴壁边界条件示意图; (b) 体态波函数(黑色)和边缘态波函数(红色)的空间分布, 其中$\psi_\pm(x)=\big|\left(\langle x|\otimes\langle \pm |\right)|\psi\rangle\big|$, $|\pm\rangle=(|0\rangle\pm|1\rangle)/\sqrt{2}$是手征对称算符的本征态; (c) 左边(右边)区域的广义布里渊区$\beta_{{\rm{L}}({\rm{R}}), i}$, $i=1, 2$代表$\beta$有两支解. 标准的广义布里渊区是单位圆(黑色实线). 参数选取为$N=30$, $\theta_1^{\rm{R}}=0.1875 \pi$, $\theta_1^{\rm{L}}=-0.3333 \pi$, $\theta_2^{\rm{R}}=0.2 \pi$, $\theta_2^{\rm{L}}=-0.6667 \pi$, 以及$\gamma=0.5$[17]

    Fig. 6.  Quantum walks with non-Hermitian skin effect: (a) Schematic illustration of the domain-wall configuration. (b) Spatial distribution of the projected norms of bulk (black) and edge (red) states, with $\psi_\pm(x)=\big|\left(\langle x|\otimes\langle \pm |\right)|\psi\rangle\big|$. Here, $|\pm\rangle=(|0\rangle\pm|1\rangle)/\sqrt{2}$ are eigenstates of the chiral-symmetry operator. (c) Generalized Brillouin zones for left (right) bulk $\beta_{{\rm{L}}({\rm{R}}), i}$, $i=1, 2$ indicates two solutions of $\beta$. Whereas the standard Brillouin zones are indicated by unit circles (solid black line). Parameters:$N=30$, $\theta_1^{\rm{R}}=0.1875 \pi$, $\theta_1^{\rm{L}}=-0.3333 \pi$, $\theta_2^{\rm{R}}=0.2 \pi$, $ \theta_2^{\rm{L}}=-0.6667 \pi, \gamma=0.5$[17]

    图 7  黑色实线为准能量能谱, 红色实线和蓝色实线分别代表零模拓扑不变量的差值和$\pi$模拓扑不变量的差值; 灰色虚线和橙色虚线分别代表左右两边零模拓扑不变量的差值和$\pi$模拓扑不变量的差值; 蓝色点代表图8选取的参数. 参数选择: $\theta_1^{\rm{L}}=9 \pi/16$, $\theta_2^{\rm{R}}= \pi/4$, $\theta_2^{\rm{L}}=3 \pi/4$, 以及$\gamma=0.2746$[17]

    Fig. 7.  Black solid line represents quasienergy spectrum. Red solid line and blue solid line represents zero-mode and $\pi$-mode topological invariant difference, respectively. Grey dashed line and orange dashed line represents zero-mode and $\pi$-mode topological invariant difference, respectively. The blue dot indicates the parameter for Fig. 8. Parameters: $\theta_1^{\rm{L}}=9 \pi/16$, $\theta_2^{\rm{R}}= \pi/4$, $\theta_2^{\rm{L}}=3 \pi/4$, and $\gamma=0.2746$[17]

    图 8  (a)—(c) 不同初态选择下, 7步演化之后实验测量得到的$\varPhi_{\varepsilon, \mu}(x)$; (d)—(f) 数值模拟得到$\varPhi_{\pi, +}(x)$和实验结果的对比. 图中还给出了数值对角化$N=15$的畴壁系统对峰值进行缩放之后的结果. 对角化得到的边缘态进行缩放的比例通过拟合$\varPhi_{\pi, +}(x)$的中心峰值得到. 其他参数与图7相同[17]

    Fig. 8.  (a)–(c) Experimentally measured $\varPhi_{\varepsilon, \mu}(x)$ after the seventh step with different initial states; (d)–(f) simulated $\varPhi_{\pi, +}(x)$ compared with experimental result. We also show the scaled norms of the edge state with $\varepsilon=\pi$ by diagonalizing a domain-wall system with $N=15$. Norms of the edge states from diagonalization are scaled to fit the central peak of the numerically-simulated $\varPhi_{\pi, +}(x)$. Other parameters are as same as Fig. 7[17]

  • [1]

    Breuer H P, Petruccione F 2006 The Theory of Open Quantum Systems (Oxford: Oxford University Press)

    [2]

    Lindblad G 1976 Commun. Math. Phys. 48 119Google Scholar

    [3]

    Dalibard J, Castin Y, Molmer K 1992 Phys. Rev. Lett. 68 580Google Scholar

    [4]

    Carmichael H J 1993 Phys. Rev. Lett. 70 2273Google Scholar

    [5]

    Prosen T 2010 J. Stat. Mech. P 07020Google Scholar

    [6]

    Prosen T 2008 New J. Phys. 10 043026Google Scholar

    [7]

    Zhou Y N, Mao L, Zhai H 2021 Phys. Rev. Res. 3 043060Google Scholar

    [8]

    Shen H, Zhen B, Fu L 2018 Phys. Rev. Lett. 120 146402Google Scholar

    [9]

    Gong Z, Ashida Y, Kawabata K, Takasan K, Higashikawa S, Ueda M 2018 Phys. Rev. X 8 031079Google Scholar

    [10]

    Kawabata K, Shiozaki K, Ueda M, Sato M 2019 Phys. Rev. X 9 041015

    [11]

    Ghatak A, Das T 2019 J. Phys. Condens. Matter 31 263001Google Scholar

    [12]

    Bergholtz E J, Budich J C, Kunst F K 2021 Rev. Mod. Phys. 93 015005Google Scholar

    [13]

    Zhen B, Hsu C W, Igarashi Y, et al. 2015 Nature 525 354Google Scholar

    [14]

    Poli C, Bellec M, Kuhl U, Mortessagne F, Schomerus H 2015 Nat. Commun. 6 6710Google Scholar

    [15]

    Zhu W, Fang X, Li D, Sun Y, Li Y, Jing Y, Chen H 2018 Phys. Rev. Lett. 121 124501Google Scholar

    [16]

    Li J, Harter A K, Liu J, Melo L D, Joglekar Y N, Luo L 2019 Nat. Commun. 10 855Google Scholar

    [17]

    Xiao L, Deng T, Wang K, Zhu G, Wang Z, Yi W, Xue P 2020 Nat. Phys. 16 761Google Scholar

    [18]

    Ding L, Shi K, Zhang Q, Shen D, Zhang X, Zhang W 2021 Phys. Rev. Lett. 126 083604Google Scholar

    [19]

    Zou D, Chen T, He W, Bao J, Lee C H, Sun H, Zhang X 2021 Nat. Commun. 12 7201Google Scholar

    [20]

    Lee T E 2016 Phys. Rev. Lett. 116 133903Google Scholar

    [21]

    Yao S, Wang Z 2018 Phys. Rev. Lett. 121 086803Google Scholar

    [22]

    Yao S, Song F, Wang Z 2018 Phys. Rev. Lett. 121 136802Google Scholar

    [23]

    Kunst F K, Edvardsson E, Budich J C, Bergholtz E J 2018 Phys. Rev. Lett. 121 026808Google Scholar

    [24]

    Lee C H, Thomale R 2019 Phys. Rev. B 99 201103(RGoogle Scholar

    [25]

    胡渝民, 宋飞, 汪忠 2021 物理学报 70 230307Google Scholar

    Hu Y M, Song F, Wang Z 2021 Acta Phys. Sin. 70 230307Google Scholar

    [26]

    Yokomizo K, Murakami S 2019 Phys. Rev. Lett. 123 066404Google Scholar

    [27]

    Song F, Yao S, Wang Z 2019 Phys. Rev. Lett. 123 170401Google Scholar

    [28]

    Jiang H, Lang L J, Yang C, Zhu S L, Chen S 2019 Phys. Rev. B 100 054301Google Scholar

    [29]

    Okuma N, Kawabata K, Shiozaki K, Sato M 2020 Phys. Rev. Lett. 124 086801Google Scholar

    [30]

    Zhang K, Yang Z, Fang C 2020 Phys. Rev. Lett. 125 126402Google Scholar

    [31]

    Yang Z, Zhang K, Fang C, Hu J 2020 Phys. Rev. Lett. 125 226402Google Scholar

    [32]

    Mao L, Deng T, Zhang P 2021 Phys. Rev. B 104 125435Google Scholar

    [33]

    Sun X Q, Zhu P, Hughes T L 2021 Phys. Rev. Lett. 127 066401Google Scholar

    [34]

    Liu C H, Zhang K, Yang Z, Chen S 2020 Phys. Rev. Res. 2 043167Google Scholar

    [35]

    Li L, Lee C H, Mu S, Gong J 2020 Nat. Commun. 11 5491Google Scholar

    [36]

    Claes J, Hughes T L 2021 Phys. Rev. B 103 L140201Google Scholar

    [37]

    Xue W T, Li M R, Hu Y M, Song F, Wang Z 2021 Phys. Rev. B 103 L241408Google Scholar

    [38]

    Okuma N, Sato M 2021 Phys. Rev. B 103 085428Google Scholar

    [39]

    Guo C X, Liu C H, Zhao X M, Liu Y, Chen S 2021 Phys. Rev. Lett. 127 116801Google Scholar

    [40]

    Xue W T, Hu Y M, Song F, Wang Z 2022 Phys. Rev. Lett. 128 120401Google Scholar

    [41]

    Lv C, Zhang R, Zhai Z, Zhou Q 2022 Nat. Commun. 13 2184Google Scholar

    [42]

    Zhou T G, Zhou Y N, Zhang P, Zhai H 2022 Phys. Rev. Research 4 L022039Google Scholar

    [43]

    Zhang K, Yang Z, Fang C 2022 Nat. Commun. 13 2496Google Scholar

    [44]

    Deng T S, Yi W 2019 Phys. Rev. B 100 035102Google Scholar

    [45]

    Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045Google Scholar

    [46]

    Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057Google Scholar

    [47]

    Chiu C K, Teo J C Y, Schnyder A P, Ryu S 2016 Rev. Mod. Phys. 88 035005Google Scholar

    [48]

    Yin C, Jiang H, Li L, Lü R, Chen S 2018 Phys. Rev. A 97 052115Google Scholar

    [49]

    Lieu S 2018 Phys. Rev. B 97 045106Google Scholar

    [50]

    Shenvi N, Kempe J, Birgitta Whaley K 2003 Phys. Rev. A 62 052307Google Scholar

    [51]

    Ambainis A 2003 Int. J. Quantum. Inform. 1 507Google Scholar

    [52]

    Kitagawa T, Rudner M S, Berg E, Demler E 2010 Phys. Rev. A 82 033429Google Scholar

    [53]

    Cardano F, Maffei F, Massa F, et al. 2016 Nat. Commun. 7 11439Google Scholar

    [54]

    Flurin E, Ramasesh V V, Hacohen-Gourgy S, Martin L S, Yao N Y, Siddiqi I 2017 Phys. Rev. X 7 031023Google Scholar

    [55]

    Cardano F, DErrico A, Dauphin A, et al. 2017 Nat. Commun. 8 15516Google Scholar

    [56]

    Xiao L, Zhan X, Bian Z H, et al. 2017 Nat. Phys. 13 1117Google Scholar

    [57]

    Zhan X, Xiao L, Bian Z, et al. 2017 Phys. Rev. Lett. 119 130501Google Scholar

    [58]

    Wang K K, Qiu X, Xiao L, et al. 2019 Nat. Commun. 10 2293Google Scholar

    [59]

    Asbóth J K, Obuse H 2013 Phys. Rev. B 88 121406Google Scholar

    [60]

    Asbóth J K, Tarasinski B, Delplace P 2014 Phys. Rev. B 90 125143Google Scholar

    [61]

    Yao S, Yan Z, Wang Z 2017 Phys. Rev. B 96 195303Google Scholar

    [62]

    Roy R, Harper F 2017 Phys. Rev. B 96 155118Google Scholar

    [63]

    Rudner M S, Lindner N H 2020 Nat. Rev. Phys. 2 229Google Scholar

  • [1] 刘敬鹄, 徐志浩. 随机两体耗散诱导的非厄米多体局域化. 物理学报, 2024, 73(7): 077202. doi: 10.7498/aps.73.20231987
    [2] 任翠翠, 尹相国. 耗散诱导的非厄米边缘爆发重现. 物理学报, 2023, 72(16): 160501. doi: 10.7498/aps.72.20230338
    [3] 徐灿鸿, 许志聪, 周子榆, 成恩宏, 郎利君. 非厄米格点模型的经典电路模拟. 物理学报, 2023, 72(20): 200301. doi: 10.7498/aps.72.20230914
    [4] 杨艳丽, 段志磊, 薛海斌. 非厄米Su-Schrieffer-Heeger链边缘态和趋肤效应依赖的电子输运特性. 物理学报, 2023, 72(24): 247301. doi: 10.7498/aps.72.20231286
    [5] 非厄米物理前沿专题编者按. 物理学报, 2022, 71(13): 130101. doi: 10.7498/aps.71.130101
    [6] 高雪儿, 李代莉, 刘志航, 郑超. 非厄米系统的量子模拟新进展. 物理学报, 2022, 71(24): 240303. doi: 10.7498/aps.71.20221825
    [7] 成恩宏, 郎利君. 非互易Aubry-André 模型的经典电路模拟. 物理学报, 2022, 71(16): 160301. doi: 10.7498/aps.71.20220219
    [8] 侯博, 曾琦波. 非厄米镶嵌型二聚化晶格. 物理学报, 2022, 71(13): 130302. doi: 10.7498/aps.71.20220890
    [9] 刘佳琳, 庞婷方, 杨孝森, 王正岭. 无序非厄米Su-Schrieffer-Heeger中的趋肤效应. 物理学报, 2022, 71(22): 227402. doi: 10.7498/aps.71.20221151
    [10] 陈舒越, 蒋闯, 柯少林, 王兵, 陆培祥. 基于Aharonov-Bohm笼的非厄米趋肤效应抑制现象. 物理学报, 2022, 71(17): 174201. doi: 10.7498/aps.71.20220978
    [11] 孙孔浩, 易为. 非厄米局域拓扑指标的动力学特性. 物理学报, 2021, 70(23): 230309. doi: 10.7498/aps.70.20211576
    [12] 胡渝民, 宋飞, 汪忠. 广义布里渊区与非厄米能带理论. 物理学报, 2021, 70(23): 230307. doi: 10.7498/aps.70.20211908
    [13] 许楠, 张岩. 三聚化非厄密晶格中具有趋肤效应的拓扑边缘态. 物理学报, 2019, 68(10): 104206. doi: 10.7498/aps.68.20190112
    [14] 李少华, 杨振军, 陆大全, 胡巍. 厄米-高斯光束在热非局域介质中传输的数值模拟研究. 物理学报, 2011, 60(2): 024214. doi: 10.7498/aps.60.024214
    [15] 黎昌金, 吕百达. 非傍轴部分相干厄米-高斯光束的相干和非相干合成. 物理学报, 2009, 58(9): 6192-6201. doi: 10.7498/aps.58.6192
    [16] 白东峰, 郭 旗, 胡 巍. 非局域克尔介质中厄米高斯光束传输的变分研究. 物理学报, 2008, 57(9): 5684-5689. doi: 10.7498/aps.57.5684
    [17] 康小平, 何 仲, 吕百达. 矢量非傍轴厄米-拉盖尔-高斯光束的光束质量. 物理学报, 2006, 55(9): 4569-4574. doi: 10.7498/aps.55.4569
    [18] 张霞萍, 郭 旗. 强非局域非线性介质中光束传输的厄米高斯解. 物理学报, 2005, 54(7): 3178-3182. doi: 10.7498/aps.54.3178
    [19] 陈增军, 宁西京. 非厄米哈密顿量的物理意义. 物理学报, 2003, 52(11): 2683-2686. doi: 10.7498/aps.52.2683
    [20] 颜家壬. 边界条件对非传播孤子运动的影响. 物理学报, 1995, 44(10): 1571-1576. doi: 10.7498/aps.44.1571
计量
  • 文章访问数:  4031
  • PDF下载量:  332
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-01
  • 修回日期:  2022-07-16
  • 上网日期:  2022-08-25
  • 刊出日期:  2022-09-05

/

返回文章
返回