搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

玻色-爱因斯坦凝聚体Rosen-Zener跃迁中的多体量子涨落效应

王建忠 曹辉 豆福全

引用本文:
Citation:

玻色-爱因斯坦凝聚体Rosen-Zener跃迁中的多体量子涨落效应

王建忠, 曹辉, 豆福全

Many-body quantum fluctuation effects of Rosen-Zener transition in Bose-Einstein condensates

Wang Jian-Zhong, Cao Hui, Dou Fu-Quan
PDF
导出引用
  • 研究了处于对称双势阱中玻色-爱因斯坦凝聚体Rosen-Zener跃迁过程的多体量子涨落效应, 分析了末态平均布居数差与扫描周期的关系. 线性情况下, 得到了末态平均布居数差关于扫描周期的解析表达式, 该结果与平均场下的结果完全一致, 并利用数值方法进行了验证.非线性情况下, 通过数值计算发现, 快速扫描时末态平均布居数差与平均场情况下的结果符合比较好; 然而绝热扫描时与平均场情况却有着很大的不同: 末态平均布居数差随扫描周期的变化不再是平均场情况下的方波形式而是类似于正弦型的振荡, 而且振荡周期会随着粒子数N以及非线性参数c的增加而增大.
    We investigate many-body quantum fluctuation effects of Rosen-Zener transition of Bose-Einstein condensate (BEC) in a symmetric double-well potential through the relation between the average population imbalance of the final state (APIFS) and scanning period. In the linear case, we deduce the analytical expression of the APIFS which has the same behavior as in the mean-field level. We also employ numerical calculation to demonstrate it. In the nonlinear case, numerical results show that the APIFS in the sudden limit also accords with that in the mean-field level whereas in the adiabatic limit the many-body result is quite different from that of the mean-field case: the behavior of APIFS with respect to scanning period is similar to sinusoidal rather than rectangular oscillation, besides the oscillation period increases with both the total number N and the nonlinear parameter c increasing.
    • 基金项目: 国家高技术研究发展计划(863计划)(批准号: 2011AA120101)资助的课题.
    • Funds: Project supported by the National High Technology Research and Development Program of China (Grant No. 2011AA120101).
    [1]

    Rosen N, Zener C 1932 Phys. Rev. 40 502

    [2]

    Rabi I I 1937 Phys. Rev. 51 652

    [3]

    Thomas G F 1983 Phys. Rev. A 27 2744

    [4]

    Osherov V I, Voronin A I 1994 Phys. Rev. A 49 265

    [5]

    Robiscoe R T 1978 Phys. Rev. A 17 247

    [6]

    Bambini A, Berman P R 1981 Phys. Rev. A 23 2496

    [7]

    Robiscoe R T 1983 Phys. Rev. A 27 1365

    [8]

    Vitanov N V 1993 J. Phys. B: At. Mol. Opt. Phys. 26 L53

    [9]

    Liu J, Hu B, Li B W 1998 Phys. Rev. Lett. 81 1749

    [10]

    Osherov V I, Nakamura H 1999 Phys. Rev. A 59 2486

    [11]

    Robinson E J, Berman P R 1983 Phys. Rev. A 27 1022

    [12]

    Bava E, Godone A, Novero C, Rocco H O D 1992 Phys. Rev. A 45 1967

    [13]

    Fu L B 2004 Phys. Rev. Lett. 92 130404

    [14]

    Olson R E 1972 Phys. Rev. A 6 1822

    [15]

    Suominen K A, Garraway B M, Stenholm S. 1992 Phys. Rev. A 45 3060

    [16]

    Fu L B, Xin G G, Ye D F, Liu J 2012 Phys. Rev. Lett. 108 103601

    [17]

    Robinson E J 1993 J. Phys.: Condens. Matter 5 13

    [18]

    Kirillov A S 2004 Advances in Space Research 33 993

    [19]

    Anderson M H, Ensher J R, Mattews M R, Wieman C E, Cornell E A 1995 Science 269 198

    [20]

    Davis K B, Mcwes M O, Andrews M R, Druten N J, Durfee D S, Kurn D M, Kerrerle W 1995 Phys. Rev. Lett. 75 3969

    [21]

    Bradley C C, Sackett C A, Tollett J J, Hulet R G 1995 Phys. Rev. Lett. 75 1687

    [22]

    Anderson M R, Townsend C G, Mienser H J, Durfee D S, Kurn D M, Ketterle W 1997 Science 275 637

    [23]

    Wang G F, Fu L B, Zhao H, Liu J 2005 Acta Phys.Sin. 54 5003 (in Chinese) [王冠芳, 傅立斌, 赵鸿, 刘杰 2005 物理学报 54 5003]

    [24]

    Wang G F, Fu L B, Liu J 2006 Phys. Rev. A 73 013609

    [25]

    Liu J, Wang W G, Zhang C W, Niu Q, Li B W 2005 Phys. Rev. A 72 063623

    [26]

    Liu J, Zhang C W, Raizen M G, Niu Q 2006 Phys. Rev. A 73 013601

    [27]

    Ye D F, Fu L B, Liu J 2008 Phys. Rev. A 77 013402

    [28]

    Jiang X, Duan W S, Li S C, Shi Y R 2009 J. Phys. B: At. Mol. Opt. Phys. 42 185001

    [29]

    Fu L B, Ye D F, Lee C H, Zhang W P, Liu J 2009 Phys. Rev. A 80 013619

    [30]

    Li S C, Fu L B, Duan W S, Liu J 2008 Phys. Rev. A 78 063621

    [31]

    Ishkhanyan A, Sokhoyan R, Joulakian B, Suominen K A 2009 Optics Communications 282 218

    [32]

    Xu X Q, Lu L H, Li Y Q 2008 Phys. Rev. A 78 043609

    [33]

    Torosov B T, Vitanov N V 2007 Phys. Rev. A 76 053404

    [34]

    Lu L H, Xu X Q, Li Y Q 2011 J. Phys. B: At. Opt. Phys. 44 145301

    [35]

    Klich I, Lannert C, Refael G 2007 Phys. Rev. Lett 99 205303

    [36]

    Franco D, Giorgini S, Pitaevskii L P, Stringari S 1999 Rev. Mod. Phys 71 463

    [37]

    Anthony L 2001 Rev. Mod. Phys 73 307

    [38]

    Steel M J, Collett M J 1998 Phys. Rev. A 57 2920

    [39]

    Cirac J I, Lewenstein M, Momer K, Zoller P 1998 Phys. Rev. A 57 1208

  • [1]

    Rosen N, Zener C 1932 Phys. Rev. 40 502

    [2]

    Rabi I I 1937 Phys. Rev. 51 652

    [3]

    Thomas G F 1983 Phys. Rev. A 27 2744

    [4]

    Osherov V I, Voronin A I 1994 Phys. Rev. A 49 265

    [5]

    Robiscoe R T 1978 Phys. Rev. A 17 247

    [6]

    Bambini A, Berman P R 1981 Phys. Rev. A 23 2496

    [7]

    Robiscoe R T 1983 Phys. Rev. A 27 1365

    [8]

    Vitanov N V 1993 J. Phys. B: At. Mol. Opt. Phys. 26 L53

    [9]

    Liu J, Hu B, Li B W 1998 Phys. Rev. Lett. 81 1749

    [10]

    Osherov V I, Nakamura H 1999 Phys. Rev. A 59 2486

    [11]

    Robinson E J, Berman P R 1983 Phys. Rev. A 27 1022

    [12]

    Bava E, Godone A, Novero C, Rocco H O D 1992 Phys. Rev. A 45 1967

    [13]

    Fu L B 2004 Phys. Rev. Lett. 92 130404

    [14]

    Olson R E 1972 Phys. Rev. A 6 1822

    [15]

    Suominen K A, Garraway B M, Stenholm S. 1992 Phys. Rev. A 45 3060

    [16]

    Fu L B, Xin G G, Ye D F, Liu J 2012 Phys. Rev. Lett. 108 103601

    [17]

    Robinson E J 1993 J. Phys.: Condens. Matter 5 13

    [18]

    Kirillov A S 2004 Advances in Space Research 33 993

    [19]

    Anderson M H, Ensher J R, Mattews M R, Wieman C E, Cornell E A 1995 Science 269 198

    [20]

    Davis K B, Mcwes M O, Andrews M R, Druten N J, Durfee D S, Kurn D M, Kerrerle W 1995 Phys. Rev. Lett. 75 3969

    [21]

    Bradley C C, Sackett C A, Tollett J J, Hulet R G 1995 Phys. Rev. Lett. 75 1687

    [22]

    Anderson M R, Townsend C G, Mienser H J, Durfee D S, Kurn D M, Ketterle W 1997 Science 275 637

    [23]

    Wang G F, Fu L B, Zhao H, Liu J 2005 Acta Phys.Sin. 54 5003 (in Chinese) [王冠芳, 傅立斌, 赵鸿, 刘杰 2005 物理学报 54 5003]

    [24]

    Wang G F, Fu L B, Liu J 2006 Phys. Rev. A 73 013609

    [25]

    Liu J, Wang W G, Zhang C W, Niu Q, Li B W 2005 Phys. Rev. A 72 063623

    [26]

    Liu J, Zhang C W, Raizen M G, Niu Q 2006 Phys. Rev. A 73 013601

    [27]

    Ye D F, Fu L B, Liu J 2008 Phys. Rev. A 77 013402

    [28]

    Jiang X, Duan W S, Li S C, Shi Y R 2009 J. Phys. B: At. Mol. Opt. Phys. 42 185001

    [29]

    Fu L B, Ye D F, Lee C H, Zhang W P, Liu J 2009 Phys. Rev. A 80 013619

    [30]

    Li S C, Fu L B, Duan W S, Liu J 2008 Phys. Rev. A 78 063621

    [31]

    Ishkhanyan A, Sokhoyan R, Joulakian B, Suominen K A 2009 Optics Communications 282 218

    [32]

    Xu X Q, Lu L H, Li Y Q 2008 Phys. Rev. A 78 043609

    [33]

    Torosov B T, Vitanov N V 2007 Phys. Rev. A 76 053404

    [34]

    Lu L H, Xu X Q, Li Y Q 2011 J. Phys. B: At. Opt. Phys. 44 145301

    [35]

    Klich I, Lannert C, Refael G 2007 Phys. Rev. Lett 99 205303

    [36]

    Franco D, Giorgini S, Pitaevskii L P, Stringari S 1999 Rev. Mod. Phys 71 463

    [37]

    Anthony L 2001 Rev. Mod. Phys 73 307

    [38]

    Steel M J, Collett M J 1998 Phys. Rev. A 57 2920

    [39]

    Cirac J I, Lewenstein M, Momer K, Zoller P 1998 Phys. Rev. A 57 1208

  • [1] 贾瑞煜, 方乒乒, 高超, 林机. 玻色-爱因斯坦凝聚体中的淬火孤子与冲击波. 物理学报, 2021, 70(18): 180303. doi: 10.7498/aps.70.20210564
    [2] 唐娜, 杨雪滢, 宋琳, 张娟, 李晓霖, 周志坤, 石玉仁. 三体相互作用下准一维玻色-爱因斯坦凝聚体中的带隙孤子及其稳定性. 物理学报, 2020, 69(1): 010301. doi: 10.7498/aps.69.20191278
    [3] 赵军亚, 李晨旭, 马晓栋. 碟形玻色-爱因斯坦凝聚体中(0, 0, 2)剪刀模的朗道阻尼和频移. 物理学报, 2019, 68(23): 230304. doi: 10.7498/aps.68.20190661
    [4] 刘晓威, 张可烨. 有效质量法调控原子玻色-爱因斯坦凝聚体的双阱动力学. 物理学报, 2017, 66(16): 160301. doi: 10.7498/aps.66.160301
    [5] 何章明, 张志强. 玻色-爱因斯坦凝聚体中的双孤子相互作用操控. 物理学报, 2016, 65(11): 110502. doi: 10.7498/aps.65.110502
    [6] 农春选, 李明, 陈翠玲. Ξ型三能级原子玻色-爱因斯坦凝聚体单模光场系统中双模原子激光的压缩性质. 物理学报, 2014, 63(4): 043202. doi: 10.7498/aps.63.043202
    [7] 李志, 曹辉. 自旋轨道耦合玻色-爱因斯坦凝聚体在尖端势垒散射中的Klein隧穿. 物理学报, 2014, 63(11): 110306. doi: 10.7498/aps.63.110306
    [8] 袁都奇. 三维简谐势阱中玻色-爱因斯坦凝聚的边界效应. 物理学报, 2014, 63(17): 170501. doi: 10.7498/aps.63.170501
    [9] 李明, 陈鼎汉, 陈翠玲. Ξ型三能级原子玻色-爱因斯坦凝聚体对光场压缩性质的影响. 物理学报, 2013, 62(18): 183201. doi: 10.7498/aps.62.183201
    [10] 赵文垒, 豆福全, 王建忠. 玻色-爱因斯坦凝聚体中非线性相互作用对量子共振棘流的影响 . 物理学报, 2012, 61(22): 220503. doi: 10.7498/aps.61.220503
    [11] 李明. 原子玻色-爱因斯坦凝聚体对V型三能级原子激光压缩性质的影响. 物理学报, 2011, 60(6): 063201. doi: 10.7498/aps.60.063201
    [12] 赵建刚, 孙长勇, 梁宝龙, 苏杰. 虚光场对玻色-爱因斯坦凝聚体与二项式光场相互作用系统中光场压缩性质的影响. 物理学报, 2009, 58(7): 4635-4640. doi: 10.7498/aps.58.4635
    [13] 曲春雷, 赵清. 周期驱动玻色-爱因斯坦凝聚系统的棘齿效应. 物理学报, 2009, 58(7): 4390-4395. doi: 10.7498/aps.58.4390
    [14] 李菊萍, 谭 磊, 臧小飞, 杨 科. 偶极旋量玻色-爱因斯坦凝聚体在外场中的自旋混合动力学. 物理学报, 2008, 57(12): 7467-7476. doi: 10.7498/aps.57.7467
    [15] 叶地发, 傅立斌, 赵 鸿, 刘 杰. 非线性Rosen-Zener跃迁. 物理学报, 2007, 56(9): 5071-5076. doi: 10.7498/aps.56.5071
    [16] 徐 震, 周蜀渝, 屈求智, 刘 华, 周善钰, 王育竹. QUIC阱中紧束缚状态下87Rb原子气体的玻色-爱因斯坦凝聚体相变的直接观测. 物理学报, 2006, 55(11): 5643-5647. doi: 10.7498/aps.55.5643
    [17] 王冠芳, 傅立斌, 赵 鸿, 刘 杰. 双势阱玻色-爱因斯坦凝聚体系的自俘获现象及其周期调制效应. 物理学报, 2005, 54(11): 5003-5013. doi: 10.7498/aps.54.5003
    [18] 徐 岩, 贾多杰, 李希国, 左 维, 李发伸. 大N近似下玻色-爱因斯坦凝聚体中单个涡旋态的解. 物理学报, 2004, 53(9): 2831-2834. doi: 10.7498/aps.53.2831
    [19] 崔海涛, 王林成, 衣学喜. 低维俘获原子的玻色-爱因斯坦凝聚中的有限粒子数效应. 物理学报, 2004, 53(4): 991-995. doi: 10.7498/aps.53.991
    [20] 周 明, 方家元, 黄春佳. 相互作用原子玻色-爱因斯坦凝聚体诱导的光场压缩效应. 物理学报, 2003, 52(8): 1916-1919. doi: 10.7498/aps.52.1916
计量
  • 文章访问数:  5912
  • PDF下载量:  404
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-03-29
  • 修回日期:  2012-06-14
  • 刊出日期:  2012-11-05

玻色-爱因斯坦凝聚体Rosen-Zener跃迁中的多体量子涨落效应

  • 1. 北京理工大学物理学院, 北京 100081;
  • 2. 北京应用物理与计算数学研究所, 计算物理国家重点实验室, 北京 100088;
  • 3. 北京大学应用物理与技术研究中心, 高能量密度物理数值模拟教育部重点实验室, 北京 100084
    基金项目: 国家高技术研究发展计划(863计划)(批准号: 2011AA120101)资助的课题.

摘要: 研究了处于对称双势阱中玻色-爱因斯坦凝聚体Rosen-Zener跃迁过程的多体量子涨落效应, 分析了末态平均布居数差与扫描周期的关系. 线性情况下, 得到了末态平均布居数差关于扫描周期的解析表达式, 该结果与平均场下的结果完全一致, 并利用数值方法进行了验证.非线性情况下, 通过数值计算发现, 快速扫描时末态平均布居数差与平均场情况下的结果符合比较好; 然而绝热扫描时与平均场情况却有着很大的不同: 末态平均布居数差随扫描周期的变化不再是平均场情况下的方波形式而是类似于正弦型的振荡, 而且振荡周期会随着粒子数N以及非线性参数c的增加而增大.

English Abstract

参考文献 (39)

目录

    /

    返回文章
    返回