搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

原位中子衍射研究两相NiTi合金的微力学相互作用和相变机理

孙光爱 王虹 汪小琳 陈波 常丽丽 刘耀光 盛六四 Woo W Kang MY

引用本文:
Citation:

原位中子衍射研究两相NiTi合金的微力学相互作用和相变机理

孙光爱, 王虹, 汪小琳, 陈波, 常丽丽, 刘耀光, 盛六四, Woo W, Kang MY

Insitu neutron diffraction study of micromechanical interaction and phase transformation in dual phase NiTi alloy during tensile loading

Sun Guang-Ai, Wang Hong, Wang Xiao-Lin, Chen Bo, Chang Li-Li, Liu Yao-Guang, Sheng Liu-Si, Woo Wanchuck, Kang Mi-Hyun
PDF
导出引用
  • NiTi合金的形状记忆效应与其微观结构特征密切相关, 中子衍射技术可以在力学加载过程中原位观察块体NiTi合金的相变、 晶间应变以及孪晶再取向等演化特征. 结合两相NiTi合金宏观应力-应变曲线呈现的四种阶段性变形特征, 利用原位中子衍射技术对其变形过程中的微观结构演化进行了分析. 奥氏体初始体积份额约22%, 在低应变硬化阶段, 晶面(110)B2和(002)B19' 的应变分别突然减小和增大表明出现了应力诱发马氏体相变, 奥氏体体积份额迅速减小, 产生了 011 Ⅱ型孪晶; 同时初始马氏体也开始发生再取向, 随着应变量的增加, 开始出现新的{201}型马氏体孪晶, 这种孪晶引起的应变卸载时不能回复. 在高应变硬化阶段孪晶变形起主导作用, 衍射峰半高宽变化较小; 而在应变硬化饱和阶段则以滑移机制为主, 大量位错的产生使衍射峰半高宽显著增加.
    It is well known that the shape memory effect of NiTi alloy is closely related to the micro-structural characteristics. Neutron diffraction method can used to explore the changes of the phase transformation, lattice strain and twining reorientation of bulk NiTi alloy during deformation caused by the applied stress. In this paper, combining the four types of deformation characteristics in the macro stress-strain curves of dual phase NiTi alloy and using in-situ neutron diffraction measurement, the micromechanical interactions and phase transformation are determined. The volume fraction of the initial austenite before deformation is about 22%. The contrast transformation, which is corresponding to the lattice strain rapid decreasing of (110)B2 and increasing of (002)B19', reveals that the stress-induced transformation from austenite to martensite phase appears with the volume fraction of austenite decreasing rapidly and 011 II type twinning increases at the low strain hardening stage. At the same time, the initial martensite grains change their orientation to a favorable direction and the new {201} type martensite twinnings induced with the increase of applied stress cannot recover after unloading. At the high strain hardening stage, the twinning deformation is considered to be the main mechanism from the observing of the changes in the full width at half maximum (FWHM). Meanwhile, the slipping caused by dislocation is the main deformation mechanism corresponding to the obvious increas of the FWHM at the statured stage of the strain hardening.
    • 基金项目: 国家自然科学基金(批准号: 91126001, 11105128和51001024), 中国工程物理研究院科学技术发展基金(批准号: 2010A0103002)和中国工程物理研究院核物理与化学研究所科学技术创新基金(批准号: 2009CX01)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 91126001, 11105128, 51001024), the Science and Technology Foundation of Chinese Academy of Engineering Physics (Grant No. 2010A0103002), and the Science and Technology Innovation Fund of Institute of Nuclear Physics and Chemistry of Chinese Academy of Engineering Physics (Grant No. 2009CX01).
    [1]

    Hatcher N, Kontsevoi O Y, Freeman A J 2009 Phys. Rev. B 79 020202

    [2]

    Allafi J K, Ren X, Eggeler G 2002 Acta Mater. 50 793

    [3]

    Fan G, Chen W, Yeng S, Zhu J, Ren X, Otsuka K 2004 Acta Mater. 52 4351

    [4]

    Krishman M, Singh J B 2000 Acta Mater. 48 1325

    [5]

    Bhattacharya K, Conti K S, Zanzotto G, Zimmer J 2004 Nature 428 55

    [6]

    Liu Y, Xie Z L 2003 Acta Mater. 51 5529

    [7]

    Kulkov S N, Mironov Y P 1995 Nucl. Instr. Meth. Phys. Res. A 359 165

    [8]

    Sitepu H, Schmahl W W, Allafi J K, Eggeler G, Dlouhy A, Toebbens D M, Tovar M 2002 Scripta Mater. 46 543

    [9]

    Allafi J K, Schmahl W W, Wagner M, Sitepu H, Toebbens D M, Eggeler G 2004 Mater. Sci. Eng. A 378 161

    [10]

    Allafi J K, Schmahl W W, Toebbens D M 2006 Acta Mater. 54 3171

    [11]

    Allafi J K, Eggeler G, Schmahl W W, Sheptyakov D 2006 Mater. Sci. Eng. A 438-440 593

    [12]

    Young M L, Wagner M F X, Frenzel J, Schmahl W W, Eggeler G 2010 Acta Mater. 58 2344

    [13]

    Simon T, Kroger A, Somsen C, Dlouhy A, Eggeler G 2010 Acta Mater. 58 1850

    [14]

    Bhattacharya K, Kohn R V 1996 Acta Mater. 44 529

    [15]

    Gall K, Lim T J, Mcdowell D L, Sehitoglu H, Chumlyakov Y I 2000 Inter J. Plast. 16 1189

    [16]

    Bourke M A M, Vaidyanathan R, Dunand D C 1996 Appl. Phys. Lett. 69 21

    [17]

    Vaidyanathan R, Bourke M A M, Dunand D C 1999 J. Appl. Phys. 86 3020

    [18]

    Rathod C R, Clausen B, Bourke M A M, Vaidyanathan R 2006 Appl. Phys. Lett. 88 201919

    [19]

    Knowles K M, Smith D A 1981 Acta Metall. 29 101

    [20]

    Ren X, Otsuka K 1998 Scripta Mater. 38 1669

    [21]

    Liu Y, Liu Y, Van H J 1998 Scripta Mater. 39 1047

    [22]

    Miyazaki S, Otsuka K, Suzuki Y 1981 Scripta Metall. 15 287

    [23]

    Otsuka K, Ren X 2005 Pro. Mater. Sci. 50 511

    [24]

    Shaw J A, Kyriakides S 1997 Acta Mater. 45 683

    [25]

    Nishida M, Li S, Kitamura K, Furukawa T, Chiba A, Hara T 1998 Scripta Mater. 39 1749

    [26]

    Goo E, Duerig T, Melton K, Sinclair R 1985 Acta Metal. 33 1725

    [27]

    Li S, Yamauchi K, Maruhashi Y, Nishida M 2003 Scripta Mater. 49 723

  • [1]

    Hatcher N, Kontsevoi O Y, Freeman A J 2009 Phys. Rev. B 79 020202

    [2]

    Allafi J K, Ren X, Eggeler G 2002 Acta Mater. 50 793

    [3]

    Fan G, Chen W, Yeng S, Zhu J, Ren X, Otsuka K 2004 Acta Mater. 52 4351

    [4]

    Krishman M, Singh J B 2000 Acta Mater. 48 1325

    [5]

    Bhattacharya K, Conti K S, Zanzotto G, Zimmer J 2004 Nature 428 55

    [6]

    Liu Y, Xie Z L 2003 Acta Mater. 51 5529

    [7]

    Kulkov S N, Mironov Y P 1995 Nucl. Instr. Meth. Phys. Res. A 359 165

    [8]

    Sitepu H, Schmahl W W, Allafi J K, Eggeler G, Dlouhy A, Toebbens D M, Tovar M 2002 Scripta Mater. 46 543

    [9]

    Allafi J K, Schmahl W W, Wagner M, Sitepu H, Toebbens D M, Eggeler G 2004 Mater. Sci. Eng. A 378 161

    [10]

    Allafi J K, Schmahl W W, Toebbens D M 2006 Acta Mater. 54 3171

    [11]

    Allafi J K, Eggeler G, Schmahl W W, Sheptyakov D 2006 Mater. Sci. Eng. A 438-440 593

    [12]

    Young M L, Wagner M F X, Frenzel J, Schmahl W W, Eggeler G 2010 Acta Mater. 58 2344

    [13]

    Simon T, Kroger A, Somsen C, Dlouhy A, Eggeler G 2010 Acta Mater. 58 1850

    [14]

    Bhattacharya K, Kohn R V 1996 Acta Mater. 44 529

    [15]

    Gall K, Lim T J, Mcdowell D L, Sehitoglu H, Chumlyakov Y I 2000 Inter J. Plast. 16 1189

    [16]

    Bourke M A M, Vaidyanathan R, Dunand D C 1996 Appl. Phys. Lett. 69 21

    [17]

    Vaidyanathan R, Bourke M A M, Dunand D C 1999 J. Appl. Phys. 86 3020

    [18]

    Rathod C R, Clausen B, Bourke M A M, Vaidyanathan R 2006 Appl. Phys. Lett. 88 201919

    [19]

    Knowles K M, Smith D A 1981 Acta Metall. 29 101

    [20]

    Ren X, Otsuka K 1998 Scripta Mater. 38 1669

    [21]

    Liu Y, Liu Y, Van H J 1998 Scripta Mater. 39 1047

    [22]

    Miyazaki S, Otsuka K, Suzuki Y 1981 Scripta Metall. 15 287

    [23]

    Otsuka K, Ren X 2005 Pro. Mater. Sci. 50 511

    [24]

    Shaw J A, Kyriakides S 1997 Acta Mater. 45 683

    [25]

    Nishida M, Li S, Kitamura K, Furukawa T, Chiba A, Hara T 1998 Scripta Mater. 39 1749

    [26]

    Goo E, Duerig T, Melton K, Sinclair R 1985 Acta Metal. 33 1725

    [27]

    Li S, Yamauchi K, Maruhashi Y, Nishida M 2003 Scripta Mater. 49 723

  • [1] 杨功章, 谢雷, 陈喜平, 何瑞琦, 韩铁鑫, 牛国梁, 房雷鸣, 贺端威. 巴黎-爱丁堡压机中子衍射高压下温度加载实验. 物理学报, 2022, 71(15): 156101. doi: 10.7498/aps.71.20220419
    [2] 刘妮, 张小芳, 梁九卿. 双光腔光机械系统的动力学相变和选择性能量交换. 物理学报, 2021, 70(14): 140301. doi: 10.7498/aps.70.20210178
    [3] 赵中华, 渠广昊, 姚佳池, 闵道敏, 翟鹏飞, 刘杰, 李盛涛. 热峰作用下单斜ZrO2相变过程的分子动力学模拟. 物理学报, 2021, 70(13): 136101. doi: 10.7498/aps.70.20201861
    [4] 王艳, 曹仟慧, 胡翠娥, 曾召益. Ce-La-Th合金高压相变的第一性原理计算. 物理学报, 2019, 68(8): 086401. doi: 10.7498/aps.68.20182128
    [5] 史钰, 陈喜平, 谢雷, 孙光爱, 房雷鸣. 基于巴黎-爱丁堡压机的高压中子衍射技术. 物理学报, 2019, 68(11): 116101. doi: 10.7498/aps.68.20190179
    [6] 岳晓乐, 向以琳, 张莹. 形状记忆合金薄板系统全局激变现象分析. 物理学报, 2019, 68(18): 180501. doi: 10.7498/aps.68.20190155
    [7] 种涛, 王桂吉, 谭福利, 赵剑衡, 唐志平. 窗口声阻抗对锆相变动力学的影响. 物理学报, 2018, 67(7): 070204. doi: 10.7498/aps.67.20172198
    [8] 刘本琼, 谢雷, 段晓溪, 孙光爱, 陈波, 宋建明, 刘耀光, 汪小琳. 铀的结构相变及力学性能的第一性原理计算. 物理学报, 2013, 62(17): 176104. doi: 10.7498/aps.62.176104
    [9] 刘洪涛, 孙光爱, 王沿东, 陈波, 汪小琳. 冲击诱发NiTi形状记忆合金相变行为研究. 物理学报, 2013, 62(1): 018103. doi: 10.7498/aps.62.018103
    [10] 周婷婷, 黄风雷. HMX不同晶型热膨胀特性及相变的ReaxFF分子动力学模拟. 物理学报, 2012, 61(24): 246501. doi: 10.7498/aps.61.246501
    [11] 汪志刚, 吴亮, 张杨, 文玉华. 面心立方铁纳米粒子的相变与并合行为的分子动力学研究. 物理学报, 2011, 60(9): 096105. doi: 10.7498/aps.60.096105
    [12] 陈永涛, 唐小军, 李庆忠. Fe基α相合金的冲击相变及其对层裂行为的影响研究. 物理学报, 2011, 60(4): 046401. doi: 10.7498/aps.60.046401
    [13] 孙光爱, 陈波, 吴二冬, 李武会, 张功, 汪小琳, V. Ji, T. Pirling, D. Hughes. 中子衍射分析时效处理对镍基单晶高温合金相结构的影响. 物理学报, 2011, 60(8): 086102. doi: 10.7498/aps.60.086102
    [14] 李永华, 刘常升, 孟繁玲, 王煜明, 郑伟涛. NiTi合金薄膜厚度对相变温度影响的X射线光电子能谱分析. 物理学报, 2009, 58(4): 2742-2745. doi: 10.7498/aps.58.2742
    [15] 邵建立, 秦承森, 王裴. 动态压缩下马氏体相变力学性质的微观研究. 物理学报, 2009, 58(3): 1936-1941. doi: 10.7498/aps.58.1936
    [16] 孙光爱, Darren Hughes, Thilo Pirling, Vincent Ji, 陈波, 陈华, 吴二冬, 张俊. 中子衍射法研究单晶镍基高温合金热机械疲劳引起的应力和晶格错配. 物理学报, 2009, 58(4): 2549-2555. doi: 10.7498/aps.58.2549
    [17] 明保全, 王矜奉, 臧国忠, 王春明, 盖志刚, 杜 鹃, 郑立梅. 铌酸钾钠基无铅压电陶瓷的X射线衍射与相变分析. 物理学报, 2008, 57(9): 5962-5967. doi: 10.7498/aps.57.5962
    [18] 王清周, 陆东梅, 崔春翔, 韩福生. 利用内耗研究淬火空位对Cu-11.9Al-2.5Mn(wt%)形状记忆合金逆马氏体相变温度的影响. 物理学报, 2008, 57(11): 7083-7087. doi: 10.7498/aps.57.7083
    [19] 邵建立, 王 裴, 秦承森, 周洪强. 铁冲击相变的分子动力学研究. 物理学报, 2007, 56(9): 5389-5393. doi: 10.7498/aps.56.5389
    [20] 宫长伟, 王轶农, 杨大智. NiTi形状记忆合金马氏体相变的第一性原理研究. 物理学报, 2006, 55(6): 2877-2881. doi: 10.7498/aps.55.2877
计量
  • 文章访问数:  4519
  • PDF下载量:  1166
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-04-13
  • 修回日期:  2012-06-18
  • 刊出日期:  2012-11-05

原位中子衍射研究两相NiTi合金的微力学相互作用和相变机理

  • 1. 中国工程物理研究院中子物理学重点实验室, 核物理与化学研究所, 绵阳 621900;
  • 2. 中国科学技术大学核科学技术学院, 合肥 230026;
  • 3. 北京理工大学材料学院, 北京 100081;
  • 4. 韩国原子能科学研究院中子科学部, 韩国大田 305-353
    基金项目: 国家自然科学基金(批准号: 91126001, 11105128和51001024), 中国工程物理研究院科学技术发展基金(批准号: 2010A0103002)和中国工程物理研究院核物理与化学研究所科学技术创新基金(批准号: 2009CX01)资助的课题.

摘要: NiTi合金的形状记忆效应与其微观结构特征密切相关, 中子衍射技术可以在力学加载过程中原位观察块体NiTi合金的相变、 晶间应变以及孪晶再取向等演化特征. 结合两相NiTi合金宏观应力-应变曲线呈现的四种阶段性变形特征, 利用原位中子衍射技术对其变形过程中的微观结构演化进行了分析. 奥氏体初始体积份额约22%, 在低应变硬化阶段, 晶面(110)B2和(002)B19' 的应变分别突然减小和增大表明出现了应力诱发马氏体相变, 奥氏体体积份额迅速减小, 产生了 011 Ⅱ型孪晶; 同时初始马氏体也开始发生再取向, 随着应变量的增加, 开始出现新的{201}型马氏体孪晶, 这种孪晶引起的应变卸载时不能回复. 在高应变硬化阶段孪晶变形起主导作用, 衍射峰半高宽变化较小; 而在应变硬化饱和阶段则以滑移机制为主, 大量位错的产生使衍射峰半高宽显著增加.

English Abstract

参考文献 (27)

目录

    /

    返回文章
    返回