搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高压下Fe从bcc到hcp结构相变机理的第一性原理计算

卢志鹏 祝文军 卢铁城

引用本文:
Citation:

高压下Fe从bcc到hcp结构相变机理的第一性原理计算

卢志鹏, 祝文军, 卢铁城

Ab initio study of the bcc-to-hcp transition mechanism in Fe under pressure

Lu Zhi-Peng, Zhu Wen-Jun, Lu Tie-Cheng
PDF
导出引用
  • 采用基于密度泛函理论的第一性原理方法, 分别研究了压力作用下Fe从体心立方 (bcc, 相) 结构到六角密排(hcp, 相) 结构相变的两种不同的相变机理: 相变过程中出现亚稳定的面心立方(fcc) 结构(bcc-fcc-hcp) , 以及相变过程中没有出现亚稳定的fcc结构(bcc-hcp) . 计算结果表明: 静水压力条件下, 相变过程中并不会产生亚稳定的fcc结构, 这与最近的原位XRD实验测量结果相一致. 随着压力的增加, fcc-hcp的相变势垒逐渐增加, 压力趋向于阻止Fe从fcc结构到hcp结构的相变. 计算得到了相变过程中原子磁性和结构的详细信息, 分析表明相变过程中涉及复杂的磁性转变, 并且讨论了原子磁性对结构转变影响的物理机理. 此外, 对分子动力学模拟中产生亚稳定的fcc结构的原因也进行了讨论.
    We perform ab initio calculations on two different transition mechanisms of the bcc-to-hcp phase transition in Fe under pressure distinguished by the occurrence of the metastable fcc intermediate phase on the transition path, that is, the bcc-hcp and the bcc-fcc-hcp. The calculated results indicate that the occurrence of the fcc intermediate state during the transition is energetically unfavorable, which is consistent with the recent in situ XRD experiments. The enthalpy barrier of the fcc-hcp increases with pressure increasing, which indicates that the pressure tends to impede the transformation from fcc to hcp phase in Fe. The details of the structural and magnetic behaviors of the intermediate states during the transition are investigated, which indicates that there are complex magnetism transitions during the phase transition. The physical origins of the influence of magnetism on the phase transition are discussed. Moreover, the origin of the occurrence and evolution of the fcc metastable structure during the transition in the MD simulations are also discussed.
    • 基金项目: 国家自然科学基金 (批准号: 11102194) 和冲击波物理与爆轰物理国防科技重点实验室基金 (批准号: 9140C670201110C6704) 资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11102194), and the Science and Technology Foundation of State Key Laboratory of Shock Wave and Detonation Physics (Grant No. 9140C670201110C6704).
    [1]

    Bancroft D, Peterson E L, Minshall S 1956 J. Appl. Phys. 27 291

    [2]

    Wang F M, Ingalls R 1998 Phys. Rev. B 57 5647

    [3]

    Kalantar D H, Belak J F, Collins W G, Colvin J D, Davies H M, Eggert J H, Germann T C, Hawreliak J, Holian B L, Kadau K, Lomdahl P S, Lorenzana H E, Meyers M A, Rosolankova K, Schneider M S, Sheppard J, Stölken J S, Wark J S 2005 Phys. Rev. Lett. 95 075502

    [4]

    Hawreliak J, Colvin J D, Eggert J H, Kalantar D H, Lorenzana H E, Stölken J S, Davies H M, Germann T C, Holian B L, Kadau K, Lomdahl P S, Higginbotham A, Rosolankova K, Sheppard J, Wark J S 2006 Phys. Rev. B 74 184107

    [5]

    Hawreliak J A, El-Dasher B, Lorenzana H, Kimminau G, Higginbotham A, Nagler B, Vinko S M, Murphy W J, Whitcher T, Wark J S, Rothman S, Park N 2011 Phys. Rev. B 83 144114

    [6]

    Kadau K, Germann T C, Lomdahl P S, Holian B L 2002 Science 296 1681

    [7]

    Kadau K, Germann T C, Lomdahl P S, Holian B L 2005 Phys. Rev. B 72 064120

    [8]

    Kadau K, Germann T C, Lomdahl P S, Albers R C, Wark J S, Higginbotham A, Holian B L 2007 Phys. Rev. Lett. 98 135701

    [9]

    Wang B T, Shao J L, Zhang G C, Li W D, Zhang P 2010 J. Phys.: Condens. Matter 22 435404

    [10]

    Mailhiot C, McMahan A K 1991 Phys. Rev. B 44 11578

    [11]

    Perez-Mato J M, Aroyo M, Capillas C, Blaha P, Schwarz K 2003 Phys. Rev. Lett. 90 049603

    [12]

    Capillas C, Perez-Mato J M, Aroyo M I 2007 J. Phys.: Condens. Matter 19 275203

    [13]

    Mathon O, Baudelet F, Itié J P, Polian A, d'Astuto M, Chervin J C, Pascarelli S 2004 Phys. Rev. Lett. 93 255503

    [14]

    Baudelet F, Pascarelli S, Mathon O, Itié J P, Polian A, d'Astuto M, Chervin J C 2005 J. Phys.: Condens. Matter 17 S957

    [15]

    Ekman M, Sadigh B, Einarsdotter K, Blaha P 1998 Phys. Rev. B 58 5296

    [16]

    Hasegawa H, Pettifor D G 1983 Phys. Rev. Lett. 50 130

    [17]

    Okatov S V, Kuznetsov A R, Gornostyrev Y N, Urtsev V N, Katsnelson M I 2009 Phys. Rev. B 79 094111

    [18]

    Steinle-Neumann G, Stixrude L, Cohen R E 1999 Phys. Rev. B 60 791

    [19]

    Herper H C, Hoffmann E, Entel P 1999 Phys. Rev. B 60 3839

    [20]

    Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169

    [21]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [22]

    Blöchl P E 1994 Phys. Rev. B 50 17953

    [23]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [24]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [25]

    Methfessel M, Paxton A T 1989 Phys. Rev. B 40 3616

    [26]

    Blöchl P E, Jepsen O, Andersen O K 1994 Phys. Rev. B 49 16223

    [27]

    Birch F 1947 Phys. Rev. 71 809

    [28]

    Steinle-Neumann G, Cohen R E, Stixrude L 2004 J. Phys.: Condens. Matter 16 S1109

    [29]

    Jiang D E, Carter E A 2003 Phys. Rev. B 67 214103

    [30]

    Friák M, Šob M 2008 Phys. Rev. B 77 174117

    [31]

    Bassett W A, Huang E 1987 Science 238 780

    [32]

    Jephcoat A P, Mao H K, Bell P M 1986 J. Geophys. Res. 91 4677

    [33]

    Taylor R D, Pasternak M P, Jeanloz R 1991 J. Appl. Phys. 69 6126

    [34]

    Lizárraga R, Nordström L, Eriksson O, Wills J 2008 Phys. Rev. B 78 064410

    [35]

    Monza A, Meffre A, Baudelet F, Rueff J-P, d'Astuto M, Munsch P, Huotari S, Lachaize S, Chaudret B, Shukla A 2011 Phys. Rev. Lett. 106 247201

    [36]

    Liu J B, Johnson D D 2009 Phys. Rev. B 79 134113

  • [1]

    Bancroft D, Peterson E L, Minshall S 1956 J. Appl. Phys. 27 291

    [2]

    Wang F M, Ingalls R 1998 Phys. Rev. B 57 5647

    [3]

    Kalantar D H, Belak J F, Collins W G, Colvin J D, Davies H M, Eggert J H, Germann T C, Hawreliak J, Holian B L, Kadau K, Lomdahl P S, Lorenzana H E, Meyers M A, Rosolankova K, Schneider M S, Sheppard J, Stölken J S, Wark J S 2005 Phys. Rev. Lett. 95 075502

    [4]

    Hawreliak J, Colvin J D, Eggert J H, Kalantar D H, Lorenzana H E, Stölken J S, Davies H M, Germann T C, Holian B L, Kadau K, Lomdahl P S, Higginbotham A, Rosolankova K, Sheppard J, Wark J S 2006 Phys. Rev. B 74 184107

    [5]

    Hawreliak J A, El-Dasher B, Lorenzana H, Kimminau G, Higginbotham A, Nagler B, Vinko S M, Murphy W J, Whitcher T, Wark J S, Rothman S, Park N 2011 Phys. Rev. B 83 144114

    [6]

    Kadau K, Germann T C, Lomdahl P S, Holian B L 2002 Science 296 1681

    [7]

    Kadau K, Germann T C, Lomdahl P S, Holian B L 2005 Phys. Rev. B 72 064120

    [8]

    Kadau K, Germann T C, Lomdahl P S, Albers R C, Wark J S, Higginbotham A, Holian B L 2007 Phys. Rev. Lett. 98 135701

    [9]

    Wang B T, Shao J L, Zhang G C, Li W D, Zhang P 2010 J. Phys.: Condens. Matter 22 435404

    [10]

    Mailhiot C, McMahan A K 1991 Phys. Rev. B 44 11578

    [11]

    Perez-Mato J M, Aroyo M, Capillas C, Blaha P, Schwarz K 2003 Phys. Rev. Lett. 90 049603

    [12]

    Capillas C, Perez-Mato J M, Aroyo M I 2007 J. Phys.: Condens. Matter 19 275203

    [13]

    Mathon O, Baudelet F, Itié J P, Polian A, d'Astuto M, Chervin J C, Pascarelli S 2004 Phys. Rev. Lett. 93 255503

    [14]

    Baudelet F, Pascarelli S, Mathon O, Itié J P, Polian A, d'Astuto M, Chervin J C 2005 J. Phys.: Condens. Matter 17 S957

    [15]

    Ekman M, Sadigh B, Einarsdotter K, Blaha P 1998 Phys. Rev. B 58 5296

    [16]

    Hasegawa H, Pettifor D G 1983 Phys. Rev. Lett. 50 130

    [17]

    Okatov S V, Kuznetsov A R, Gornostyrev Y N, Urtsev V N, Katsnelson M I 2009 Phys. Rev. B 79 094111

    [18]

    Steinle-Neumann G, Stixrude L, Cohen R E 1999 Phys. Rev. B 60 791

    [19]

    Herper H C, Hoffmann E, Entel P 1999 Phys. Rev. B 60 3839

    [20]

    Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169

    [21]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [22]

    Blöchl P E 1994 Phys. Rev. B 50 17953

    [23]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [24]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [25]

    Methfessel M, Paxton A T 1989 Phys. Rev. B 40 3616

    [26]

    Blöchl P E, Jepsen O, Andersen O K 1994 Phys. Rev. B 49 16223

    [27]

    Birch F 1947 Phys. Rev. 71 809

    [28]

    Steinle-Neumann G, Cohen R E, Stixrude L 2004 J. Phys.: Condens. Matter 16 S1109

    [29]

    Jiang D E, Carter E A 2003 Phys. Rev. B 67 214103

    [30]

    Friák M, Šob M 2008 Phys. Rev. B 77 174117

    [31]

    Bassett W A, Huang E 1987 Science 238 780

    [32]

    Jephcoat A P, Mao H K, Bell P M 1986 J. Geophys. Res. 91 4677

    [33]

    Taylor R D, Pasternak M P, Jeanloz R 1991 J. Appl. Phys. 69 6126

    [34]

    Lizárraga R, Nordström L, Eriksson O, Wills J 2008 Phys. Rev. B 78 064410

    [35]

    Monza A, Meffre A, Baudelet F, Rueff J-P, d'Astuto M, Munsch P, Huotari S, Lachaize S, Chaudret B, Shukla A 2011 Phys. Rev. Lett. 106 247201

    [36]

    Liu J B, Johnson D D 2009 Phys. Rev. B 79 134113

  • [1] 田城, 蓝剑雄, 王苍龙, 翟鹏飞, 刘杰. BaF 2高压相变行为的第一性原理研究. 物理学报, 2022, 71(1): 017102. doi: 10.7498/aps.71.20211163
    [2] 田城, 蓝剑雄, 王苍龙, 翟鹏飞, 刘杰. BaF2高压相变行为的第一性原理研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211163
    [3] 华颖鑫, 刘福生, 耿华运, 郝龙, 于继东, 谭叶, 李俊. 多次冲击加载-卸载路径下铁α-ε相变动力学特性研究. 物理学报, 2021, 70(16): 166201. doi: 10.7498/aps.70.20210089
    [4] 高立科, 赵先豪, 刁心峰, 唐天宇, 唐延林. 第一性原理对CsSnBr3施加静水压力后光电性质的探究. 物理学报, 2021, 70(15): 158801. doi: 10.7498/aps.70.20210397
    [5] 罗娅, 张耘, 梁金铃, 刘林凤. 铜铁镁三掺铌酸锂晶体的第一性原理研究. 物理学报, 2020, 69(5): 054205. doi: 10.7498/aps.69.20191799
    [6] 梁金铃, 张耘, 邱晓燕, 吴圣钰, 罗娅. 铁镁共掺钽酸锂晶体的第一性原理研究. 物理学报, 2019, 68(20): 204205. doi: 10.7498/aps.68.20190575
    [7] 姜平国, 汪正兵, 闫永播. 三氧化钨表面氢吸附机理的第一性原理研究. 物理学报, 2017, 66(8): 086801. doi: 10.7498/aps.66.086801
    [8] 严顺涛, 姜振益. Cu掺杂对TiNi合金马氏体相变路径影响的第一性原理研究. 物理学报, 2017, 66(13): 130501. doi: 10.7498/aps.66.130501
    [9] 李俊, 吴强, 于继东, 谭叶, 姚松林, 薛桃, 金柯. 铁冲击相变的晶向效应. 物理学报, 2017, 66(14): 146201. doi: 10.7498/aps.66.146201
    [10] 马蕾, 王旭, 尚家香. Pd掺杂对NiTi合金马氏体相变和热滞影响的第一性原理研究. 物理学报, 2014, 63(23): 233103. doi: 10.7498/aps.63.233103
    [11] 周平, 王新强, 周木, 夏川茴, 史玲娜, 胡成华. 第一性原理研究硫化镉高压相变及其电子结构与弹性性质. 物理学报, 2013, 62(8): 087104. doi: 10.7498/aps.62.087104
    [12] 余本海, 陈东. α-, β-和γ-Si3N4 高压下的电子结构和相变: 第一性原理研究 . 物理学报, 2012, 61(19): 197102. doi: 10.7498/aps.61.197102
    [13] 梁培, 刘阳, 王乐, 吴珂, 董前民, 李晓艳. 表面悬挂键导致硅纳米线掺杂失效机理的第一性原理研究. 物理学报, 2012, 61(15): 153102. doi: 10.7498/aps.61.153102
    [14] 刘先锋, 韩玖荣, 江学范. 阻挫三角反铁磁AgCrO2螺旋自旋序的第一性原理研究. 物理学报, 2010, 59(9): 6487-6493. doi: 10.7498/aps.59.6487
    [15] 李琦, 范广涵, 熊伟平, 章勇. ZnO 极性表面及其N原子吸附机理的第一性原理研究. 物理学报, 2010, 59(6): 4170-4177. doi: 10.7498/aps.59.4170
    [16] 卢志鹏, 祝文军, 卢铁城, 刘绍军, 崔新林, 陈向荣. 单轴应变条件下Fe从α到ε结构相变机制的第一性原理计算. 物理学报, 2010, 59(6): 4303-4312. doi: 10.7498/aps.59.4303
    [17] 孙源, 明星, 孟醒, 孙正昊, 向鹏, 兰民, 陈岗. 多铁材料BaCoF4电子结构的第一性原理研究. 物理学报, 2009, 58(8): 5653-5660. doi: 10.7498/aps.58.5653
    [18] 孙源, 黄祖飞, 范厚刚, 明星, 王春忠, 陈岗. BiFeO3中各离子在铁电相变中作用本质的第一性原理研究. 物理学报, 2009, 58(1): 193-200. doi: 10.7498/aps.58.193.1
    [19] 卢志鹏, 祝文军, 刘绍军, 卢铁城, 陈向荣. 非静水压条件下铁从α到ε结构相变的第一性原理计算. 物理学报, 2009, 58(3): 2083-2089. doi: 10.7498/aps.58.2083
    [20] 杨银堂, 武 军, 蔡玉荣, 丁瑞雪, 宋久旭, 石立春. p型K:ZnO导电机理的第一性原理研究. 物理学报, 2008, 57(11): 7151-7156. doi: 10.7498/aps.57.7151
计量
  • 文章访问数:  5237
  • PDF下载量:  3022
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-10-26
  • 修回日期:  2012-12-20
  • 刊出日期:  2013-03-05

高压下Fe从bcc到hcp结构相变机理的第一性原理计算

  • 1. 四川大学物理科学与技术学院, 成都 610064;
  • 2. 中国工程物理研究院流体物理研究所, 冲击波物理与爆轰物理重点实验室, 绵阳 621900;
  • 3. 武警警官学院数学与物理学系, 成都 610213
    基金项目: 国家自然科学基金 (批准号: 11102194) 和冲击波物理与爆轰物理国防科技重点实验室基金 (批准号: 9140C670201110C6704) 资助的课题.

摘要: 采用基于密度泛函理论的第一性原理方法, 分别研究了压力作用下Fe从体心立方 (bcc, 相) 结构到六角密排(hcp, 相) 结构相变的两种不同的相变机理: 相变过程中出现亚稳定的面心立方(fcc) 结构(bcc-fcc-hcp) , 以及相变过程中没有出现亚稳定的fcc结构(bcc-hcp) . 计算结果表明: 静水压力条件下, 相变过程中并不会产生亚稳定的fcc结构, 这与最近的原位XRD实验测量结果相一致. 随着压力的增加, fcc-hcp的相变势垒逐渐增加, 压力趋向于阻止Fe从fcc结构到hcp结构的相变. 计算得到了相变过程中原子磁性和结构的详细信息, 分析表明相变过程中涉及复杂的磁性转变, 并且讨论了原子磁性对结构转变影响的物理机理. 此外, 对分子动力学模拟中产生亚稳定的fcc结构的原因也进行了讨论.

English Abstract

参考文献 (36)

目录

    /

    返回文章
    返回