搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多波长飞秒激光激发下GaAs纳米线SHG特性研究

张晓青 贺号 胡明列 颜鑫 张霞 任晓敏 王清月

引用本文:
Citation:

多波长飞秒激光激发下GaAs纳米线SHG特性研究

张晓青, 贺号, 胡明列, 颜鑫, 张霞, 任晓敏, 王清月

Optical SHG properties of GaAs nanowires irradiated with multi-wavelength femto-second laser pulses

Zhang Xiao-Qing, He Hao, Hu Ming-Lie, Yan Xin, Zhang Xia, Ren Xiao-Min, Wang Qing-Yue
PDF
导出引用
  • 本文基于有限元法研究了直立生长于GaAs衬底的GaAs纳米线的光场响应和光场增强性质. 实验使用多个波长的飞秒激光脉冲激发GaAs纳米线, 测得了较高效率的二次谐波信号, 并首次使用宽带超连续飞秒脉冲 (1000–1300 nm) 在纳米线上获取了宽带、无杂散荧光噪声的二次谐波信号. 这种高效的二次谐波产生过程主要归因于纳米结构引起的局域场增强效应. 本文阐明了GaAs纳米线的二次谐波倍频特性, 这些结果对于其在纳米光学中的光器件、 光集成等领域的进一步研究和实际应用具有很好的参考价值.
    The nonlinear optical properties of semiconductor nanowires are of vital importance in the researches of nano-optics and fabrication of nano-scale optoelectronic components. GaAs is a direct bandgap semiconductor material of wide bandgap, high electron mobility, large χ(2), high laser damage threshold and stable chemical properties, all of which make it a potential nonlinear optical material. In this report, based on the finite element method (FEM), we investigated the optical response and local field enhancement of GaAs nanowires perpendicular to the GaAs substrate surface. Under the radiation of femto-second laser pulses at different wavelengths, efficient second harmonic generation (SHG) signal was acquired from the nanowires. Furthermore, noise-free broadband SHG signal was also detected to be excitated by super-continuous femto-second pulses (1000-1300 nm). The high-efficiency SHG process could be attribated mainly to the local field enhancement effect of the nanowires. Our investigation is the first, as far as we know, demonstrate the SHG properties of GaAs nanowires, and the results suggest that GaAs nanowires are promising in the potential applications in nano-scale optical devices, integrated nanophotonic circuits, from which related nano-optics researches can benefit.
    • 基金项目: 国家重点基础研究发展计划 (批准号: 2010CB327600, 2011CB808101)、教育部博士点新教师基金(批准号: 20110032120057)和国家自然科学基金 (批准号: 61108080, 61020106007) 资助的课题.
    • Funds: Project supported by the State Key Development Program for Basic Research of China (Grant Nos. 2010CB327600, 2011CB808101), the New Teachers' Foundation for Doctor Stations of Ministry of Education of China (Grant No. 20110032120057), and the National Natural Science Foundation of China (Grant Nos. 61108080, 61020106007).
    [1]

    Qin J M, Tian L F, Zhao D X, Jiang D Y, Cao J M, Ding M, Guo Z 2011 Acta Phys. Sin. 60 107307 (in Chinese) [秦杰明, 田立飞, 赵东旭, 蒋大勇, 曹建明, 丁梦, 郭振 2011 物理学报 60 107307]

    [2]

    Ren S T, Wang Q, Zhao F, Qu S L 2012 Chin. Phys. B 21 038104

    [3]

    Yan H, Choe H S, Nam S W, Hu Y, Das S, Klemic J F, Ellenbogen J C, Lieber C M 2011 Nature 470 240

    [4]

    Garnett E, Yang P 2010 Nano Lett. 10 1082

    [5]

    Patolsky F, Timko B P, Zheng G, Lieber C M 2007 Mrs Bulletin 32 142

    [6]

    Johnson J C, Choi H, Knutsen K P, Schaller R D, Yang G P, Saykally R J 2002 Nature Mater. 1 106

    [7]

    Liu R B, Zou B S 2011 Chin. Phys. B 20 047104

    [8]

    Johnson J C, Yan H, Schaller R D, Petersen P B, Yang P, Saykally R J 2002 Nano Lett. 2 279

    [9]

    Nakayama Y, Pauzauskie P, Radenovic A, Onorato R, Saykally R, Liphardt J, Yang P 2007 Nature 447 1098

    [10]

    Prasanth R, van Vugt L K, Vanmaekelbergh D A M, Gerritsen H C 2006 Appl. Phys. Lett. 88 181501

    [11]

    Barrelet C J, Ee Ho-Seok, Kwon S, Park H 2011 Nano Lett. 11 3022

    [12]

    Zhang Y, Zhou H, Liu S W, Tian Z R, Xiao M 2009 Nano Lett. 9 2109

    [13]

    Fan W, Zhang S, Panoiu N-C, Abdenour A, Krishna S, Osgood Jr. R M, Malloy K J, Brueck S R J 2006 Nano Lett. 6 1027

    [14]

    Ye X, Huang H, Ren X, Yang Y, Guo J, Huang Y, Wang Q 2010 Chin. Phys. Lett. 27 046101

    [15]

    Carl J B, Andrew B G, Lieber C M 2004 Nano Lett. 4 1981

    [16]

    Lide D R 2009 CRC handbook of chemistry and physics: a ready-refetence book of chemical and physical data, 90 th Edition (CRC Press)

    [17]

    Duan X, Wang J, Lieber C M 2000 Appl. Phys. Lett. 76 1116

    [18]

    Palik E D 1985 Handbook of Optical Constants of Solids (Boston, Academic Press)

    [19]

    Ditlbacher H, Hohenau A, Wagner D, Kreibig U, Rogers M, Hofer F, Aussenegg F, Krenn J R 2005 Phys. Rev. Lett. 95 257403

    [20]

    Lu C, Huang W, Luan J, Lu Z, Qian Y, Yun B, Hu G, Wang Z, Cui Y 2008 Opt. Commun. 281 4038

    [21]

    Gualtieri E J, Haupert L M, Simpson G J 2008 Chem. Phys. Lett. 465 167

  • [1]

    Qin J M, Tian L F, Zhao D X, Jiang D Y, Cao J M, Ding M, Guo Z 2011 Acta Phys. Sin. 60 107307 (in Chinese) [秦杰明, 田立飞, 赵东旭, 蒋大勇, 曹建明, 丁梦, 郭振 2011 物理学报 60 107307]

    [2]

    Ren S T, Wang Q, Zhao F, Qu S L 2012 Chin. Phys. B 21 038104

    [3]

    Yan H, Choe H S, Nam S W, Hu Y, Das S, Klemic J F, Ellenbogen J C, Lieber C M 2011 Nature 470 240

    [4]

    Garnett E, Yang P 2010 Nano Lett. 10 1082

    [5]

    Patolsky F, Timko B P, Zheng G, Lieber C M 2007 Mrs Bulletin 32 142

    [6]

    Johnson J C, Choi H, Knutsen K P, Schaller R D, Yang G P, Saykally R J 2002 Nature Mater. 1 106

    [7]

    Liu R B, Zou B S 2011 Chin. Phys. B 20 047104

    [8]

    Johnson J C, Yan H, Schaller R D, Petersen P B, Yang P, Saykally R J 2002 Nano Lett. 2 279

    [9]

    Nakayama Y, Pauzauskie P, Radenovic A, Onorato R, Saykally R, Liphardt J, Yang P 2007 Nature 447 1098

    [10]

    Prasanth R, van Vugt L K, Vanmaekelbergh D A M, Gerritsen H C 2006 Appl. Phys. Lett. 88 181501

    [11]

    Barrelet C J, Ee Ho-Seok, Kwon S, Park H 2011 Nano Lett. 11 3022

    [12]

    Zhang Y, Zhou H, Liu S W, Tian Z R, Xiao M 2009 Nano Lett. 9 2109

    [13]

    Fan W, Zhang S, Panoiu N-C, Abdenour A, Krishna S, Osgood Jr. R M, Malloy K J, Brueck S R J 2006 Nano Lett. 6 1027

    [14]

    Ye X, Huang H, Ren X, Yang Y, Guo J, Huang Y, Wang Q 2010 Chin. Phys. Lett. 27 046101

    [15]

    Carl J B, Andrew B G, Lieber C M 2004 Nano Lett. 4 1981

    [16]

    Lide D R 2009 CRC handbook of chemistry and physics: a ready-refetence book of chemical and physical data, 90 th Edition (CRC Press)

    [17]

    Duan X, Wang J, Lieber C M 2000 Appl. Phys. Lett. 76 1116

    [18]

    Palik E D 1985 Handbook of Optical Constants of Solids (Boston, Academic Press)

    [19]

    Ditlbacher H, Hohenau A, Wagner D, Kreibig U, Rogers M, Hofer F, Aussenegg F, Krenn J R 2005 Phys. Rev. Lett. 95 257403

    [20]

    Lu C, Huang W, Luan J, Lu Z, Qian Y, Yun B, Hu G, Wang Z, Cui Y 2008 Opt. Commun. 281 4038

    [21]

    Gualtieri E J, Haupert L M, Simpson G J 2008 Chem. Phys. Lett. 465 167

  • [1] 张晓莉, 王庆伟, 姚文秀, 史少平, 郑立昂, 田龙, 王雅君, 陈力荣, 李卫, 郑耀辉. 热透镜效应对半整块腔型中二次谐波过程的影响. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20220575
    [2] 覃赵福, 陈浩, 胡涛政, 陈卓, 王振林. 基于导波驱动相变材料超构表面的基波及二次谐波聚焦. 物理学报, 2022, 71(3): 034208. doi: 10.7498/aps.71.20211596
    [3] 亢玉彬, 唐吉龙, 李科学, 李想, 侯效兵, 楚学影, 林逢源, 王晓华, 魏志鹏. Be, Si掺杂调控GaAs纳米线结构相变及光学特性. 物理学报, 2021, 70(20): 207804. doi: 10.7498/aps.70.20210782
    [4] 王凯, 孙靖雅, 潘昌基, 王飞飞, 张可, 陈治成. 飞秒激光辐照二硫化钨的超快动态响应及时域整形调制. 物理学报, 2021, 70(20): 205201. doi: 10.7498/aps.70.20210737
    [5] 王鹏华, 唐吉龙, 亢玉彬, 方铉, 房丹, 王登魁, 林逢源, 王晓华, 魏志鹏. GaAs纳米线晶体结构及光学特性. 物理学报, 2019, 68(8): 087803. doi: 10.7498/aps.68.20182116
    [6] 苑汇帛, 李林, 曾丽娜, 张晶, 李再金, 曲轶, 杨小天, 迟耀丹, 马晓辉, 刘国军. 金辅助催化方法制备GaAs和GaAs/InGaAs纳米线结构的形貌表征及生长机理研究. 物理学报, 2018, 67(18): 188101. doi: 10.7498/aps.67.20180220
    [7] 焦悦, 陶海岩, 季博宇, 宋晓伟, 林景全. 用于飞秒激光纳米加工的TiO2粒子阵列诱导多种基底表面近场增强. 物理学报, 2017, 66(14): 144203. doi: 10.7498/aps.66.144203
    [8] 崔建功, 张霞, 颜鑫, 李军帅, 黄永清, 任晓敏. GaAs纳米线及GaAs/InxGa1-xAs/GaAs纳米线径向异质结构的无催化选区生长的实验研究. 物理学报, 2014, 63(13): 136103. doi: 10.7498/aps.63.136103
    [9] 杨青, 杜广庆, 陈烽, 吴艳敏, 欧燕, 陆宇, 侯洵. 时间整形飞秒激光诱导熔融硅表面纳米周期条纹的电子动力学研究. 物理学报, 2014, 63(4): 047901. doi: 10.7498/aps.63.047901
    [10] 卢发铭, 夏元钦, 张盛, 陈德应. 飞秒强激光脉冲驱动Ne高次谐波蓝移产生相干可调谐极紫外光实验研究. 物理学报, 2013, 62(2): 024212. doi: 10.7498/aps.62.024212
    [11] 彭娜娜, 霍燕燕, 周侃, 贾鑫, 潘佳, 孙真荣, 贾天卿. 飞秒激光诱导自组织纳米周期结构及其光学特性的研究进展. 物理学报, 2013, 62(9): 094201. doi: 10.7498/aps.62.094201
    [12] 朱丽丹, 孙方远, 祝捷, 唐大伟. 飞秒激光抽运探测热反射法对金属纳米薄膜超快非平衡传热的研究. 物理学报, 2012, 61(13): 134402. doi: 10.7498/aps.61.134402
    [13] 戴玉蓉, 丁德胜. 小瓣数贝塞尔声束的二次谐波. 物理学报, 2011, 60(12): 124302. doi: 10.7498/aps.60.124302
    [14] 熊平新, 贾鑫, 贾天卿, 邓莉, 冯东海, 孙真荣, 徐至展. 三光束飞秒激光干涉在GaP,ZnSe表面诱导二维复合纳米-微米周期结构. 物理学报, 2010, 59(1): 311-316. doi: 10.7498/aps.59.311
    [15] 周城, 高艳侠, 王培吉, 张仲, 李萍. 负折射率材料中二次谐波转换效率的理论分析. 物理学报, 2009, 58(2): 914-918. doi: 10.7498/aps.58.914
    [16] 陈 亮, 梁昌洪, 党晓杰. 非线性左手材料中的二次谐波. 物理学报, 2007, 56(11): 6398-6402. doi: 10.7498/aps.56.6398
    [17] 陈宝振, 黄祖洽. 飞秒强激光在充气毛细管中产生三次谐波的效率. 物理学报, 2005, 54(1): 113-116. doi: 10.7498/aps.54.113
    [18] 马 晶, 章若冰, 刘 博, 朱 晨, 柴 路, 张伟力, 张志刚, 王清月. 飞秒BBO光参量放大中闲频光二次谐波的产生. 物理学报, 2005, 54(8): 3675-3679. doi: 10.7498/aps.54.3675
    [19] 郑仰东, 李俊庆, 李淳飞. 双振子模型手性分子介质的二次谐波理论. 物理学报, 2003, 52(2): 372-376. doi: 10.7498/aps.52.372
    [20] 王兆华, 魏志义, 滕 浩, 王 鹏, 张 杰. 飞秒激光脉冲的谐波频率分辨光学开关法测量研究. 物理学报, 2003, 52(2): 362-366. doi: 10.7498/aps.52.362
计量
  • 文章访问数:  3601
  • PDF下载量:  1412
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-09-20
  • 修回日期:  2012-11-06
  • 刊出日期:  2013-04-05

多波长飞秒激光激发下GaAs纳米线SHG特性研究

  • 1. 天津大学精密仪器与光电子工程学院, 光电信息技术科学教育部重点实验室, 天津 300072;
  • 2. 北京邮电大学信息光子学与光通信国家重点实验室, 北京 100876
    基金项目: 国家重点基础研究发展计划 (批准号: 2010CB327600, 2011CB808101)、教育部博士点新教师基金(批准号: 20110032120057)和国家自然科学基金 (批准号: 61108080, 61020106007) 资助的课题.

摘要: 本文基于有限元法研究了直立生长于GaAs衬底的GaAs纳米线的光场响应和光场增强性质. 实验使用多个波长的飞秒激光脉冲激发GaAs纳米线, 测得了较高效率的二次谐波信号, 并首次使用宽带超连续飞秒脉冲 (1000–1300 nm) 在纳米线上获取了宽带、无杂散荧光噪声的二次谐波信号. 这种高效的二次谐波产生过程主要归因于纳米结构引起的局域场增强效应. 本文阐明了GaAs纳米线的二次谐波倍频特性, 这些结果对于其在纳米光学中的光器件、 光集成等领域的进一步研究和实际应用具有很好的参考价值.

English Abstract

参考文献 (21)

目录

    /

    返回文章
    返回