搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

矩形喷口欠膨胀超声速射流对撞的实验研究

张强 陈鑫 何立明 荣康

引用本文:
Citation:

矩形喷口欠膨胀超声速射流对撞的实验研究

张强, 陈鑫, 何立明, 荣康

An experimental study of rectangular under-expanded supersonic jets collision

Zhang Qiang, Chen Xin, He Li-Ming, Rong Kang
PDF
导出引用
  • 在不同喷口间距和射流压力下开展了矩形喷口欠膨胀超声速射流对撞实验并与自由射流进行了对比. 实验表明:超声速射流对撞的辐射噪声中存在四种不同的啸音模式, 且随喷口距离和射流压力的变化在不同模式间切换. 在射流压力大于0.5 MPa且喷口间距小于50 mm时, 射流对撞面在两个喷口外形成两道正激波之间, 啸音基频维持在3 kHz左右. 随喷口间距的增大或射流压力的降低, 射流对撞面在一侧喷口外的弓形激波与另一侧喷口外的正激波之间. 对撞面也有可能出现在两个弓形激波之间, 对应的啸音基频约为9 kHz, 但容易受扰动而回到喷口一侧或是在喷口之间大幅度振荡. 当射流压力小于0.36 MPa且喷口间距大于70 mm后, 对撞面在两个喷口之间大幅度振荡, 产生基频在1 kHz左右并随射流压力的降低和喷口间距的增大而降低的啸音.
    Rectangular under-expanded supersonic jet collision experiment is carried out under different nozzle distances and jet pressures and compared with that in the case of free jet. Experiments indicate that there are four screech tone modes of supersonic jet collision, switched from one mode to another depending on the nozzle distance and jet pressure. Two normal shock waves are present between nozzles as jet pressure is more than 0.5 MPa and nozzle distance is less than 50 mm, radiating a stable screech tone with a frequency of about 3 kHz. With nozzle distance increasing or jet pressure decreasing, a bow shock is present at one nozzle exit and a normal shock wave appears at the other exit with the collision surface oscillating between them. Collision surface might be kept balanced in the centre of two nozzles with a 9 kHz frequency screech tone, however, it is vulnerable to disturbance and would return to the equilibrium position near nozzle exit or oscillate between nozzles with large amplitude. When jet pressure is less than 0.36 MPa and nozzle distance greater than 70 mm, the collision surface substantially oscillates between the nozzles, radiating a screech tone with a frequency of about 1 kHz which decreases with jet pressure decreasing and nozzle distance increasing.
    • 基金项目: 国家自然科学基金青年科学基金(批准号:51106178)资助的课题.
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 51106178).
    [1]

    Tam C K W 1998 Theoret. Comput. Fluid Dyn. 10 393

    [2]

    He F, Yang J L, Shen M Y 2002 Acta Phys. Sin. 51 1918 (in Chinese) [何枫, 杨京龙, 沈孟育 2002 物理学报 51 1918]

    [3]

    Tam C K W 1995 Annu. Rev. Fluid Mech. 27 17

    [4]

    Powell A 1953 Proc. Phys. Soc. London 66 1039

    [5]

    Levin V A, Nechaev J N, Tarasov A I 2001 High-Speed Deflagration and Detonation (Moscow:ELEX-KM) p223

    [6]

    Jackson S I, Shepherd J E 2004 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit Fort Lauderdale, USA, July 11-14, 2004 p3919

    [7]

    Li H P 2010 Ph. D. Dissertation (Xi'an:Aire Fore Engineering University) (in Chinese) [李海鹏 2010 博士学位论文(西安:空军工程大学)]

    [8]

    Lee J H, Knystautas R, Feriman A 1984 Combustion Flame 56 227

    [9]

    Zhang Q, He L M, Chen X, Rong K 2012 J. Propulsion Technol. 33 499 (in Chinese) [张强, 何立明, 陈鑫, 荣康 2012 推进技术 33 499]

    [10]

    Berland J, Bogey C, Bailly C 2006 12th AIAA/CEAS Aeroacoustics Conference Cambridge, UN, May 8-10, 2006 p2496

    [11]

    Panda J, Raman G, Zaman K B M Q 2004 NASA/TM 2004-212481

    [12]

    Shen Z G, Ma S L, Lian Q X, Xing Y S, Liu C H 1988 Powder Science and Technol. 4 12 (in Chinese) [沈志刚, 麻树林, 连淇祥, 邢玉山, 刘承晖1998 粉体技术 4 12]

    [13]

    He F, Xie J S, Yao C H 2002 J. Propulsion Technol. 29 98 (in Chinese) [何枫, 谢俊石, 姚朝晖 2002 推进技术 29 98]

    [14]

    Cui X G, Yao C H 2008 J. Propulsion Technol. 29 98 (in Chinese) [崔新光, 姚朝晖 2008 推进技术 29 98]

    [15]

    He F, Hao P F, Zhang X W 2003 Acta Acustica 28 182 (in Chinese) [何枫, 郝鹏飞, 张锡文 2003 声学学报 28 182]

  • [1]

    Tam C K W 1998 Theoret. Comput. Fluid Dyn. 10 393

    [2]

    He F, Yang J L, Shen M Y 2002 Acta Phys. Sin. 51 1918 (in Chinese) [何枫, 杨京龙, 沈孟育 2002 物理学报 51 1918]

    [3]

    Tam C K W 1995 Annu. Rev. Fluid Mech. 27 17

    [4]

    Powell A 1953 Proc. Phys. Soc. London 66 1039

    [5]

    Levin V A, Nechaev J N, Tarasov A I 2001 High-Speed Deflagration and Detonation (Moscow:ELEX-KM) p223

    [6]

    Jackson S I, Shepherd J E 2004 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit Fort Lauderdale, USA, July 11-14, 2004 p3919

    [7]

    Li H P 2010 Ph. D. Dissertation (Xi'an:Aire Fore Engineering University) (in Chinese) [李海鹏 2010 博士学位论文(西安:空军工程大学)]

    [8]

    Lee J H, Knystautas R, Feriman A 1984 Combustion Flame 56 227

    [9]

    Zhang Q, He L M, Chen X, Rong K 2012 J. Propulsion Technol. 33 499 (in Chinese) [张强, 何立明, 陈鑫, 荣康 2012 推进技术 33 499]

    [10]

    Berland J, Bogey C, Bailly C 2006 12th AIAA/CEAS Aeroacoustics Conference Cambridge, UN, May 8-10, 2006 p2496

    [11]

    Panda J, Raman G, Zaman K B M Q 2004 NASA/TM 2004-212481

    [12]

    Shen Z G, Ma S L, Lian Q X, Xing Y S, Liu C H 1988 Powder Science and Technol. 4 12 (in Chinese) [沈志刚, 麻树林, 连淇祥, 邢玉山, 刘承晖1998 粉体技术 4 12]

    [13]

    He F, Xie J S, Yao C H 2002 J. Propulsion Technol. 29 98 (in Chinese) [何枫, 谢俊石, 姚朝晖 2002 推进技术 29 98]

    [14]

    Cui X G, Yao C H 2008 J. Propulsion Technol. 29 98 (in Chinese) [崔新光, 姚朝晖 2008 推进技术 29 98]

    [15]

    He F, Hao P F, Zhang X W 2003 Acta Acustica 28 182 (in Chinese) [何枫, 郝鹏飞, 张锡文 2003 声学学报 28 182]

  • [1] 朱聪, 丁留贯, 周坤论, 钱天麒. II型射电暴分类及其与太阳高能粒子事件的关系. 物理学报, 2021, 70(9): 099601. doi: 10.7498/aps.70.20201800
    [2] 周曜智, 李春, 李晨阳, 李清廉. 超声速横向气流中液体射流的轨迹预测与连续液柱模型. 物理学报, 2020, 69(23): 234702. doi: 10.7498/aps.69.20200903
    [3] 沙莎, 张焕好, 陈志华, 郑纯, 吴威涛, 石启陈. 纵向磁场抑制Richtmyer-Meshkov不稳定性机理. 物理学报, 2020, 69(18): 184701. doi: 10.7498/aps.69.20200363
    [4] 彭旭, 李斌, 王顺尧, 饶国宁, 陈网桦. 激波冲击作用下液膜破碎的气液两相流. 物理学报, 2020, 69(24): 244702. doi: 10.7498/aps.69.20201051
    [5] 王鹏, 沈赤兵. 等离子体合成射流对超声速混合层的混合增强. 物理学报, 2019, 68(17): 174701. doi: 10.7498/aps.68.20190683
    [6] 张孝石, 许昊, 王聪, 陆宏志, 赵静. 水流冲击超声速气体射流实验研究. 物理学报, 2017, 66(5): 054702. doi: 10.7498/aps.66.054702
    [7] 吴里银, 王振国, 李清廉, 李春. 超声速气流中液体横向射流的非定常特性与振荡边界模型. 物理学报, 2016, 65(9): 094701. doi: 10.7498/aps.65.094701
    [8] 孙晓燕, 朱军芳. 部分道路关闭引起的交通激波特性研究. 物理学报, 2015, 64(11): 114502. doi: 10.7498/aps.64.114502
    [9] 易仕和, 陈植. 隔离段激波串流场特征的试验研究进展. 物理学报, 2015, 64(19): 199401. doi: 10.7498/aps.64.199401
    [10] 陈喆, 吴九汇, 陈鑫, 雷浩, 侯洁洁. 流经矩形喷嘴的超音速射流啸叫模式切换的实验研究. 物理学报, 2015, 64(5): 054703. doi: 10.7498/aps.64.054703
    [11] 陈植, 易仕和, 朱杨柱, 何霖, 全鹏程. 强梯度复杂流场中的粒子动力学响应试验研究. 物理学报, 2014, 63(18): 188301. doi: 10.7498/aps.63.188301
    [12] 沙莎, 陈志华, 张焕好, 姜孝海. Schardin问题的数值研究. 物理学报, 2012, 61(6): 064702. doi: 10.7498/aps.61.064702
    [13] 王健, 李应红, 程邦勤, 苏长兵, 宋慧敏, 吴云. 等离子体气动激励控制激波的机理研究. 物理学报, 2009, 58(8): 5513-5519. doi: 10.7498/aps.58.5513
    [14] 吴钦宽. 一类非线性方程激波解的Sinc-Galerkin方法. 物理学报, 2006, 55(4): 1561-1564. doi: 10.7498/aps.55.1561
    [15] 吴钦宽. 一类激波问题的间接匹配解. 物理学报, 2005, 54(6): 2510-2513. doi: 10.7498/aps.54.2510
    [16] 袁行球, 李 辉, 赵太泽, 俞国扬, 郭文康, 须 平. 超声速等离子体射流的数值模拟. 物理学报, 2004, 53(8): 2638-2643. doi: 10.7498/aps.53.2638
    [17] 周效锋, 陶淑芬, 刘佐权, 阚家德, 李德修. Fe73.5Cu1Nb3Si13.5B9非晶合金的激波纳米晶化速率和晶化度的对比研究. 物理学报, 2002, 51(2): 322-325. doi: 10.7498/aps.51.322
    [18] 何枫, 杨京龙, 沈孟育. 激波和剪切层相互作用下的超音速射流. 物理学报, 2002, 51(9): 1918-1922. doi: 10.7498/aps.51.1918
    [19] 吕晓阳, 孔令江, 刘慕仁. 一维元胞自动机随机交通流模型的宏观方程分析. 物理学报, 2001, 50(7): 1255-1259. doi: 10.7498/aps.50.1255
    [20] 张树东, 张为俊. 激光烧蚀Al靶产生的等离子体中辐射粒子的速度及激波. 物理学报, 2001, 50(8): 1512-1516. doi: 10.7498/aps.50.1512
计量
  • 文章访问数:  3292
  • PDF下载量:  709
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-11-22
  • 修回日期:  2012-12-16
  • 刊出日期:  2013-04-05

矩形喷口欠膨胀超声速射流对撞的实验研究

  • 1. 空军工程大学航空航天工程学院, 西安 710038
    基金项目: 国家自然科学基金青年科学基金(批准号:51106178)资助的课题.

摘要: 在不同喷口间距和射流压力下开展了矩形喷口欠膨胀超声速射流对撞实验并与自由射流进行了对比. 实验表明:超声速射流对撞的辐射噪声中存在四种不同的啸音模式, 且随喷口距离和射流压力的变化在不同模式间切换. 在射流压力大于0.5 MPa且喷口间距小于50 mm时, 射流对撞面在两个喷口外形成两道正激波之间, 啸音基频维持在3 kHz左右. 随喷口间距的增大或射流压力的降低, 射流对撞面在一侧喷口外的弓形激波与另一侧喷口外的正激波之间. 对撞面也有可能出现在两个弓形激波之间, 对应的啸音基频约为9 kHz, 但容易受扰动而回到喷口一侧或是在喷口之间大幅度振荡. 当射流压力小于0.36 MPa且喷口间距大于70 mm后, 对撞面在两个喷口之间大幅度振荡, 产生基频在1 kHz左右并随射流压力的降低和喷口间距的增大而降低的啸音.

English Abstract

参考文献 (15)

目录

    /

    返回文章
    返回