搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

缺陷黄铜矿结构Xga2S4 (X=Zn, Cd, Hg)晶体电子结构和光学性质的第一性原理研究

焦照勇 郭永亮 牛毅君 张现周

引用本文:
Citation:

缺陷黄铜矿结构Xga2S4 (X=Zn, Cd, Hg)晶体电子结构和光学性质的第一性原理研究

焦照勇, 郭永亮, 牛毅君, 张现周

The first principle study of electronic and optical properties of defect chalcopyrite XGa2S4 (X=Zn, Cd, Hg)

Jiao Zhao-Yong, Guo Yong-Liang, Niu Yi-Jun, Zhang Xian-Zhou
PDF
导出引用
  • 采用基于密度泛函理论(DFT)的第一性原理超软赝势方法对缺陷黄铜矿结构XGa2S4 (X=Zn, Cd, Hg)晶体的晶格结构、电学以及光学性质进行了对比研究. 分析比较了它们的晶格常数、键长、能带结构、态密度、介电函数、折射率和反射系数等性质, 并总结其变化趋势. 结果表明: 这三种材料的光学性质在中间能量区域(4 eV10 eV)表现出较强的各向异性, 而在低能区域(4 eV)和高能区域(10 eV)各向异性较弱. ZnGa2S4和HgGa2S4两种材料的折射率曲线在等离子体频率p处有一明显的拐点, 反射系数在p处达到最大值后急剧下降. 三种晶体的强反射峰均处于紫外区域, 因此可以用作紫外光屏蔽或紫外探测材料.
    The electronic and optical properties of the defect chalcopyrite XGa2S4 (X=Zn, Cd, Hg) compounds are studied based on the first-principle calculations. Its structural properties are consistent with the earlier experimental and theoretical results, and its electronic and optical properties are discussed in detail in this paper. The results indicate that the three compounds described hare exhibit an anisotropic behaviour in the intermediate energy range (4 eV10 eV), and an isotropic behaviour in the low(4 eV) or high(10 eV) energy range. The refractive index curves of ZnGa2S4 and HgGa2S4 have an inflection point at the plasma frequency p, and their reflectivity reaches a maximal value at p and then declines sharply. Moreover, the calculated optical properties indicate that these compounds can serve as shielding and detecting devices for ultraviolet radiation.
    • 基金项目: 教育部科学技术研究重点项目(批准号: 212104)和河南省教育厅自然科学研究计划项目(批准号: 2011A140010)资助的课题.
    • Funds: Project supported by the Foundation for Key Program of Ministry of Education, China (Grant No. 212104), and the Basic Research Program of Education Bureau of Henan Province, China (No. 2011A140010).
    [1]

    Georgobiani A N, Radautsan S I, Tiginyanu I M 1985 Sov. Phys. Semicond. 19 121

    [2]

    Ouahrani T, Reshak A H, Khenata R, Amrani B, Mebrouki M, Otero-de-la-Roza A, Luaña V 2010 J. Solid State Chem. 183 46

    [3]

    Fuentes-Cabrera M 2001 J. Phys.: Condens. Matter 13 10117

    [4]

    Sasaki M, Ozaki S, Adachi S 2005 Phys. Rev. B 72 045218

    [5]

    Ozaki S, Muto K, Adachi S 2003 J. Phys. Chem. Solids 64 1935

    [6]

    Manjón F J, Gomis O, Rodríguez-Hernández P, Pérez-González E, Muñoz A, Errandonea D, Ruiz-Fuertes J, Segura A, Fuentes-Cabrera M, Tiginyanu I M, Ursaki V V 2010 Phys. Rev. B 81 195201

    [7]

    Jing X S, Lambrecht W R L 2004 Phys. Rev. B 69 035201

    [8]

    Jing X S, Yan Y C, Yuan S M, Mi S, Niu Z G, Liang J Q 2010 Chin. Phys. B 19 107104

    [9]

    Chen D, Xiao H Y, Jia W, Chen H, Zhou H G, Li Y, Ding K N, Zhang Y F 2012 Acta Phys. Sin. 61 127103 (in Chinese) [陈懂, 肖河阳, 加伟, 陈虹, 周和根, 李奕, 丁开宁, 章永凡 2012 物理学报 61 127103]

    [10]

    Ma S H, Jiao Z Y, Zhang X Z 2012 J. Mater. Sci. 47 3849

    [11]

    Jiao Z Y, Guo Y L, Zhang X Z, Ma S H 2012 Chin. Phys. B 21 123101

    [12]

    Hahn H, Frank G, Klinger W, Störger A D Störger G 1955 Z. Anorg. Allg. Chem. 279 241

    [13]

    Kim H G, Kim W T 1990 Phys. Rev. B 41 8541

    [14]

    Popovich N I, Dovgoshei N I, Kacher I E1998 Tech. Phys. Lett. 24 242

    [15]

    Syrbu N N, Tezlevan V E 1995 Physica B 210 43

    [16]

    Suslikov L M, Gadmashi Z P, Kovach D S, Slivka V Y 1982 Opt. Spectrosc. (U.S.S.R.) 53 283

    [17]

    Samanta L K, Ghosh D K, Ghosh P S 1989 Phys. Rev. B 39 10261

    [18]

    Ursaki V V, Ricci P C, Tiginyanu I M, Anedda A, Syrbu N N, Tezlevan V E 2002 J. Phys. Chem. Solids 63 1823

    [19]

    Haeuseler H, Wäschenbach G, Lutz H D 1985 Phys. Stat. Sol. (B) 129 549

    [20]

    Huang S P, Wu D S, Li X D, Lan Y Z, Zhang H, Gong Y J, Li F F, Shen J, Cheng W D 2005 Chin. Phys. 14 1631

    [21]

    Mori-Sánchez P, Cohen A J, Yang W 2008 Phys. Rev. Lett. 100 146401

    [22]

    Saha S, Sinha T P, Mookerjee A 2000 Phys. Rev. B 62 8828

    [23]

    Godby R W, Schlter M and Sham L J 1988 Phys. Rev. B 37 10159

    [24]

    Hybertsen M S and Louie S G 1986 Phys. Rev. B 34 5390

    [25]

    Fox M, 2001 Optical Properties of Solids (New York: Oxford University Press) p143

  • [1]

    Georgobiani A N, Radautsan S I, Tiginyanu I M 1985 Sov. Phys. Semicond. 19 121

    [2]

    Ouahrani T, Reshak A H, Khenata R, Amrani B, Mebrouki M, Otero-de-la-Roza A, Luaña V 2010 J. Solid State Chem. 183 46

    [3]

    Fuentes-Cabrera M 2001 J. Phys.: Condens. Matter 13 10117

    [4]

    Sasaki M, Ozaki S, Adachi S 2005 Phys. Rev. B 72 045218

    [5]

    Ozaki S, Muto K, Adachi S 2003 J. Phys. Chem. Solids 64 1935

    [6]

    Manjón F J, Gomis O, Rodríguez-Hernández P, Pérez-González E, Muñoz A, Errandonea D, Ruiz-Fuertes J, Segura A, Fuentes-Cabrera M, Tiginyanu I M, Ursaki V V 2010 Phys. Rev. B 81 195201

    [7]

    Jing X S, Lambrecht W R L 2004 Phys. Rev. B 69 035201

    [8]

    Jing X S, Yan Y C, Yuan S M, Mi S, Niu Z G, Liang J Q 2010 Chin. Phys. B 19 107104

    [9]

    Chen D, Xiao H Y, Jia W, Chen H, Zhou H G, Li Y, Ding K N, Zhang Y F 2012 Acta Phys. Sin. 61 127103 (in Chinese) [陈懂, 肖河阳, 加伟, 陈虹, 周和根, 李奕, 丁开宁, 章永凡 2012 物理学报 61 127103]

    [10]

    Ma S H, Jiao Z Y, Zhang X Z 2012 J. Mater. Sci. 47 3849

    [11]

    Jiao Z Y, Guo Y L, Zhang X Z, Ma S H 2012 Chin. Phys. B 21 123101

    [12]

    Hahn H, Frank G, Klinger W, Störger A D Störger G 1955 Z. Anorg. Allg. Chem. 279 241

    [13]

    Kim H G, Kim W T 1990 Phys. Rev. B 41 8541

    [14]

    Popovich N I, Dovgoshei N I, Kacher I E1998 Tech. Phys. Lett. 24 242

    [15]

    Syrbu N N, Tezlevan V E 1995 Physica B 210 43

    [16]

    Suslikov L M, Gadmashi Z P, Kovach D S, Slivka V Y 1982 Opt. Spectrosc. (U.S.S.R.) 53 283

    [17]

    Samanta L K, Ghosh D K, Ghosh P S 1989 Phys. Rev. B 39 10261

    [18]

    Ursaki V V, Ricci P C, Tiginyanu I M, Anedda A, Syrbu N N, Tezlevan V E 2002 J. Phys. Chem. Solids 63 1823

    [19]

    Haeuseler H, Wäschenbach G, Lutz H D 1985 Phys. Stat. Sol. (B) 129 549

    [20]

    Huang S P, Wu D S, Li X D, Lan Y Z, Zhang H, Gong Y J, Li F F, Shen J, Cheng W D 2005 Chin. Phys. 14 1631

    [21]

    Mori-Sánchez P, Cohen A J, Yang W 2008 Phys. Rev. Lett. 100 146401

    [22]

    Saha S, Sinha T P, Mookerjee A 2000 Phys. Rev. B 62 8828

    [23]

    Godby R W, Schlter M and Sham L J 1988 Phys. Rev. B 37 10159

    [24]

    Hybertsen M S and Louie S G 1986 Phys. Rev. B 34 5390

    [25]

    Fox M, 2001 Optical Properties of Solids (New York: Oxford University Press) p143

计量
  • 文章访问数:  2353
  • PDF下载量:  1106
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-09-21
  • 修回日期:  2012-11-23
  • 刊出日期:  2013-04-05

缺陷黄铜矿结构Xga2S4 (X=Zn, Cd, Hg)晶体电子结构和光学性质的第一性原理研究

  • 1. 河南师范大学物理与电子工程学院, 新乡 453007
    基金项目: 

    教育部科学技术研究重点项目(批准号: 212104)和河南省教育厅自然科学研究计划项目(批准号: 2011A140010)资助的课题.

摘要: 采用基于密度泛函理论(DFT)的第一性原理超软赝势方法对缺陷黄铜矿结构XGa2S4 (X=Zn, Cd, Hg)晶体的晶格结构、电学以及光学性质进行了对比研究. 分析比较了它们的晶格常数、键长、能带结构、态密度、介电函数、折射率和反射系数等性质, 并总结其变化趋势. 结果表明: 这三种材料的光学性质在中间能量区域(4 eV10 eV)表现出较强的各向异性, 而在低能区域(4 eV)和高能区域(10 eV)各向异性较弱. ZnGa2S4和HgGa2S4两种材料的折射率曲线在等离子体频率p处有一明显的拐点, 反射系数在p处达到最大值后急剧下降. 三种晶体的强反射峰均处于紫外区域, 因此可以用作紫外光屏蔽或紫外探测材料.

English Abstract

参考文献 (25)

目录

    /

    返回文章
    返回