搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种水平变化可穿透波导中声传播问题的耦合简正波方法

杨春梅 骆文于 张仁和 秦继兴

引用本文:
Citation:

一种水平变化可穿透波导中声传播问题的耦合简正波方法

杨春梅, 骆文于, 张仁和, 秦继兴

A coupled-mode method for sound propagation in a range-dependent penetrable waveguide

Yang Chun-Mei, Luo Wen-Yu, Zhang Ren-He, Qin Ji-Xing
PDF
导出引用
  • 通过利用标准简正波程序KRAKEN计算本地简正波解及耦合矩阵, 进一步发展了求解水平变化波导中声场的全局矩阵耦合简正波方法(Luo et al., "A numerically stable coupled-mode formulation for acoustic propagation in range-dependent waveguides," Sci. China-Phys. Mech. Astron. 55, 572 (2012)), 使得该方法可以处理具有可穿透海底及随深度变化声速剖面等实际问题, 并提供声场的完全双向解. 本文还给出了双层波导中耦合矩阵的解析表达式, 并利用其验证了本方法中耦合矩阵数值算法的精度. 最后, 利用改善后的全局矩阵耦合简正波模型(DGMCM)计算了美国声学学会(ASA)提出的可穿透楔形波导标准问题, 将所得数值解与参考解比较, 结果表明DGMCM方法可以精确处理水平变化波导中声传播实际问题.
    The coupled-mode method based on the direct global matrix (DGMCM) approach for sound propagation in range-dependent waveguides [Luo et al., "A numerically stable coupled-mode formulation for acoustic propagation in range-dependent waveguides," Sci. China-Phys. Mech. Astron. 55, 572 (2012)] is further developed. The normal mode model KRAKEN is adopted to provide local modal solutions and their associated coupling matrices. As a result, the model DGMCM is capable of providing full two-way solutions for the two-dimensional realistic problems characterized by a penetrable bottom and a depth-varying sound speed profile. In addition, the closed-form expressions of coupling matrices for sound propagation in a range-dependent, two-layer waveguide are proposed. The numerical solutions of the coupling matrices by DGMCM agree well with the analytical solutions. Sound propagation in a penetrable wedge is solved by the updated DGMCM model. The numerical results indicate that the updated DGMCM model is numerically stable and accurate, and can provide benchmark solutions for realistic range-dependent problems.
    • 基金项目: 国家自然科学基金(批准号:11125420,11174312)和中国科学院知识创新工程资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11125420, 11174312), and the Knowledge Innovation Program of the Chinese Academy of Sciences.
    [1]

    Collis J M, Siegmann W L, Jensen F B, Zampolli M, KÜsel E T, Collins M D 2008 J. Acoust. Soc. Am. 123 51

    [2]

    Evans R B 1983 J. Acoust. Soc. Am. 74 188

    [3]

    Pierce A D 1965 J. Acoust. Soc. Am. 37 19

    [4]

    Luo W Y, Schmidt H 2009 J. Acoust. Soc. Am. 125 52

    [5]

    Collins M D, Schmidt H, Siegmann W L 2000 J. Acoust. Soc. Am. 107 1964

    [6]

    Thompson L L 2006 J. Acoust. Soc. Am. 119 1315

    [7]

    Zampolli M, Tesei A, Jensen F B, Malm N, Blottman III J B 2007 J. Acoust. Soc. Am. 122 1472

    [8]

    Peng Z H, Zhang R H 2005 Acta Acustica 30 97 (in Chinese) [彭朝晖, 张仁和 2005 声学学报 30 97]

    [9]

    Milder D M 1969 J. Acoust. Soc. Am. 46 1259

    [10]

    Rutherford S R, Hawker K E 1981 J. Acoust. Soc. Am. 70 554

    [11]

    Fawcett J A 1992 J. Acoust. Soc. Am. 92 290

    [12]

    Godin O A 1998 J. Acoust. Soc. Am. 103 159

    [13]

    Athanassoulis G A, Belibassakis K A, Mitsoudis D A, Kampanis N A, Dougalis V A 2008 J. Comp. Acoust. 16 83

    [14]

    Ferla C M, Porter M B, Jensen F B 1993 C-SNAP: Coupled SACLANTCEN normal mode propagation loss model (La Spezia, Italy: SACLANT Undersea Research Center) Technical Report SM-274

    [15]

    Porter M B, Jensen F B, Ferla C M 1991 J. Acoust. Soc. Am. 89 1058

    [16]

    Evans R B 1986 J. Acoust. Soc. Am. 80 1414

    [17]

    Luo W Y, Yang C M, Zhang R H 2012 Chin. Phys. Lett 29 014302

    [18]

    Luo W Y, Yang C M, Qin J X, Zhang R H 2012 Sci. China-Phys. Mech. Astron. 55 572

    [19]

    Schmidt H, Jensen F B 1985 J. Acoust. Soc. Am. 77 813

    [20]

    Schmidt H 1993 J. Acoust. Soc. Am. 94 2420

    [21]

    Ricks D C, Schmidt H 1994 J. Acoust. Soc. Am. 95 3339

    [22]

    Jensen F B, Kuperman W A, Porter M B, Schmidt H 2011 Computational Ocean Acoustics (2nd Ed.) (New York: Springer)

    [23]

    Porter M B 1991 The KRAKEN normal mode program (La Spezia, Italy: SACLANT Undersea Research Centre) Technical Report SM-245

    [24]

    Stotts S A 2002 J. Acoust. Soc. Am. 111 1623

    [25]

    Felsen L B 1986 J. Acoust. Soc. Am. Suppl. 1 80 S36

    [26]

    Felsen L B 1987 J. Acoust. Soc. Am. Suppl. 1 81 S39

    [27]

    Jensen F B 1998 J. Acoust. Soc. Am. 104 1310

    [28]

    Evans R B, Gilbert K E 1985 Comp. Maths. Appl. 11 795

  • [1]

    Collis J M, Siegmann W L, Jensen F B, Zampolli M, KÜsel E T, Collins M D 2008 J. Acoust. Soc. Am. 123 51

    [2]

    Evans R B 1983 J. Acoust. Soc. Am. 74 188

    [3]

    Pierce A D 1965 J. Acoust. Soc. Am. 37 19

    [4]

    Luo W Y, Schmidt H 2009 J. Acoust. Soc. Am. 125 52

    [5]

    Collins M D, Schmidt H, Siegmann W L 2000 J. Acoust. Soc. Am. 107 1964

    [6]

    Thompson L L 2006 J. Acoust. Soc. Am. 119 1315

    [7]

    Zampolli M, Tesei A, Jensen F B, Malm N, Blottman III J B 2007 J. Acoust. Soc. Am. 122 1472

    [8]

    Peng Z H, Zhang R H 2005 Acta Acustica 30 97 (in Chinese) [彭朝晖, 张仁和 2005 声学学报 30 97]

    [9]

    Milder D M 1969 J. Acoust. Soc. Am. 46 1259

    [10]

    Rutherford S R, Hawker K E 1981 J. Acoust. Soc. Am. 70 554

    [11]

    Fawcett J A 1992 J. Acoust. Soc. Am. 92 290

    [12]

    Godin O A 1998 J. Acoust. Soc. Am. 103 159

    [13]

    Athanassoulis G A, Belibassakis K A, Mitsoudis D A, Kampanis N A, Dougalis V A 2008 J. Comp. Acoust. 16 83

    [14]

    Ferla C M, Porter M B, Jensen F B 1993 C-SNAP: Coupled SACLANTCEN normal mode propagation loss model (La Spezia, Italy: SACLANT Undersea Research Center) Technical Report SM-274

    [15]

    Porter M B, Jensen F B, Ferla C M 1991 J. Acoust. Soc. Am. 89 1058

    [16]

    Evans R B 1986 J. Acoust. Soc. Am. 80 1414

    [17]

    Luo W Y, Yang C M, Zhang R H 2012 Chin. Phys. Lett 29 014302

    [18]

    Luo W Y, Yang C M, Qin J X, Zhang R H 2012 Sci. China-Phys. Mech. Astron. 55 572

    [19]

    Schmidt H, Jensen F B 1985 J. Acoust. Soc. Am. 77 813

    [20]

    Schmidt H 1993 J. Acoust. Soc. Am. 94 2420

    [21]

    Ricks D C, Schmidt H 1994 J. Acoust. Soc. Am. 95 3339

    [22]

    Jensen F B, Kuperman W A, Porter M B, Schmidt H 2011 Computational Ocean Acoustics (2nd Ed.) (New York: Springer)

    [23]

    Porter M B 1991 The KRAKEN normal mode program (La Spezia, Italy: SACLANT Undersea Research Centre) Technical Report SM-245

    [24]

    Stotts S A 2002 J. Acoust. Soc. Am. 111 1623

    [25]

    Felsen L B 1986 J. Acoust. Soc. Am. Suppl. 1 80 S36

    [26]

    Felsen L B 1987 J. Acoust. Soc. Am. Suppl. 1 81 S39

    [27]

    Jensen F B 1998 J. Acoust. Soc. Am. 104 1310

    [28]

    Evans R B, Gilbert K E 1985 Comp. Maths. Appl. 11 795

  • [1] 张士钊, 朴胜春. 倾斜弹性海底条件下浅海声场的简正波相干耦合特性分析. 物理学报, 2021, 70(21): 214304. doi: 10.7498/aps.70.20211013
    [2] 陈云天, 王经纬, 陈伟锦, 徐竞. 互易波导模式耦合理论. 物理学报, 2020, 69(15): 154206. doi: 10.7498/aps.69.20200194
    [3] 陈富州, 程晨, 罗洪刚. 密度矩阵重正化群的异构并行优化. 物理学报, 2019, 68(12): 120202. doi: 10.7498/aps.68.20190586
    [4] 孔德智, 孙超, 李明杨, 卓颉, 刘雄厚. 深海波导中基于采样简正波模态降维处理的广义似然比检测. 物理学报, 2019, 68(17): 174301. doi: 10.7498/aps.68.20190700
    [5] 孟瑞洁, 周士弘, 李风华, 戚聿波. 浅海波导中低频声场干涉简正模态的判别. 物理学报, 2019, 68(13): 134304. doi: 10.7498/aps.68.20190221
    [6] 高彦丽, 陈世明. 一种全局同质化相依网络耦合模式. 物理学报, 2016, 65(14): 148901. doi: 10.7498/aps.65.148901
    [7] 郭晓乐, 杨坤德, 马远良, 杨秋龙. 一种基于简正波模态消频散变换的声源距离深度估计方法. 物理学报, 2016, 65(21): 214302. doi: 10.7498/aps.65.214302
    [8] 秦继兴, Katsnelson Boris, 彭朝晖, 李整林, 张仁和, 骆文于. 三维绝热简正波-抛物方程理论及应用. 物理学报, 2016, 65(3): 034301. doi: 10.7498/aps.65.034301
    [9] 戚聿波, 周士弘, 张仁和. 浅海波导中折射类简正波的warping变换. 物理学报, 2016, 65(13): 134301. doi: 10.7498/aps.65.134301
    [10] 郭晓乐, 杨坤德, 马远良. 一种基于简正波模态频散的远距离宽带海底参数反演方法. 物理学报, 2015, 64(17): 174302. doi: 10.7498/aps.64.174302
    [11] 徐新河, 刘鹰, 甘月红, 刘文苗. 磁电耦合超材料本构矩阵获取方法的研究. 物理学报, 2015, 64(4): 044101. doi: 10.7498/aps.64.044101
    [12] 莫亚枭, 朴胜春, 张海刚, 李丽. 水平变化波导中的简正波耦合与能量转移. 物理学报, 2014, 63(21): 214302. doi: 10.7498/aps.63.214302
    [13] 吕翎, 李钢, 张檬, 李雨珊, 韦琳玲, 于淼. 全局耦合网络的参量辨识与时空混沌同步. 物理学报, 2011, 60(9): 090505. doi: 10.7498/aps.60.090505
    [14] 胡明亮, 惠小强. 计算自旋-s算子幺正演化矩阵ds(t)的新方法及其应用. 物理学报, 2008, 57(6): 3319-3323. doi: 10.7498/aps.57.3319
    [15] 余 赟, 惠俊英, 赵安邦, 孙国仓, 滕 超. Pekeris波导中简正波的复声强及其应用. 物理学报, 2008, 57(9): 5742-5748. doi: 10.7498/aps.57.5742
    [16] 尤云祥, 缪国平. 三维可穿透目标远场声波反演的一种指示器样本方法. 物理学报, 2002, 51(9): 2038-2051. doi: 10.7498/aps.51.2038
    [17] 张仁和, 朱柏贤. 指向性辐射器的简正波声场. 物理学报, 1983, 32(4): 490-496. doi: 10.7498/aps.32.490
    [18] 唐应吾. 具有随机起伏表面的正声速梯度浅海中的简正波声场. 物理学报, 1976, 25(6): 481-486. doi: 10.7498/aps.25.481
    [19] 张仁和. 浅海表面声道中的简正波声场. 物理学报, 1975, 24(3): 200-209. doi: 10.7498/aps.24.200
    [20] 黄宏嘉. 多波型波导耦合本地正规波型的广义理论. 物理学报, 1962, 18(7): 325-333. doi: 10.7498/aps.18.325
计量
  • 文章访问数:  3087
  • PDF下载量:  432
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-11-28
  • 修回日期:  2012-12-24
  • 刊出日期:  2013-05-05

一种水平变化可穿透波导中声传播问题的耦合简正波方法

  • 1. 中国科学院声学研究所声场声信息国家重点实验室, 北京 100190;
  • 2. 中国科学院大学, 北京 100049
    基金项目: 国家自然科学基金(批准号:11125420,11174312)和中国科学院知识创新工程资助的课题.

摘要: 通过利用标准简正波程序KRAKEN计算本地简正波解及耦合矩阵, 进一步发展了求解水平变化波导中声场的全局矩阵耦合简正波方法(Luo et al., "A numerically stable coupled-mode formulation for acoustic propagation in range-dependent waveguides," Sci. China-Phys. Mech. Astron. 55, 572 (2012)), 使得该方法可以处理具有可穿透海底及随深度变化声速剖面等实际问题, 并提供声场的完全双向解. 本文还给出了双层波导中耦合矩阵的解析表达式, 并利用其验证了本方法中耦合矩阵数值算法的精度. 最后, 利用改善后的全局矩阵耦合简正波模型(DGMCM)计算了美国声学学会(ASA)提出的可穿透楔形波导标准问题, 将所得数值解与参考解比较, 结果表明DGMCM方法可以精确处理水平变化波导中声传播实际问题.

English Abstract

参考文献 (28)

目录

    /

    返回文章
    返回