搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

含有量子点的双波长LED的光谱调控

张盼君 孙慧卿 郭志友 王度阳 谢晓宇 蔡金鑫 郑欢 谢楠 杨斌

引用本文:
Citation:

含有量子点的双波长LED的光谱调控

张盼君, 孙慧卿, 郭志友, 王度阳, 谢晓宇, 蔡金鑫, 郑欢, 谢楠, 杨斌

The spectrum-control of dual-wavelength LED with quantum dots planted in quantum wells

Zhang Pan-Jun, Sun Hui-Qing, Guo Zhi-You, Wang Du-Yang, Xie Xiao-Yu, Cai Jin-Xin, Zheng Huan, Xie Nan, Yang Bin
PDF
导出引用
  • 本文通过对含有高In组分量子点的双波长LED进行了模拟计算, 并对器件的能带结构、载流子浓度、复合速率和辐射光谱进行了研究. 通过对器件结构的调整与对比, 发现蓝绿双波长LED的绿光量子阱中加入高In组分量子点后可以拓宽辐射光谱, 使LED光谱具有更高的显色指数, 为实现无荧光粉的白光LED提供指导. 量子点对载流子具有很强的束缚能力, 并且载流子在量子点处具有更短的寿命, 载流子优先在量子点处复合, 量子点处所对应的黄光与量子阱润湿层所对应的绿光的比例随量子点浓度的增大而增大, 载流子浓度较低时以量子点处的黄光辐射为主, 载流子浓度变大后, 量子点复合逐渐达到饱和, 绿光辐射开始占据主导. 对间隔层厚度和间隔层掺杂浓度的调节可以很方便地调控载流子的分布, 从而实现对含有量子点的双波长LED两个活性层辐射速率的调控. 结果表明, 通过对量子点浓度、间隔层厚度、间隔层掺杂浓度的控节可以很好地实现对LED辐射光谱的调控作用.
    A theoretical simulation of electrical and optical characteristics of GaN-based dual-wavelength light-emitting diodes (LED) with high In content in the quantum dots (QDs) which are planted in quantum wells is conducted with APSYS software. The adjustment and contrast of the structure of the devices showed that the blue and green dual-wavelength LEDs will have a broader radiation spectrum and a higher color rendering index when QDs are planted in the green quantum wells. QDs have strong blinding capacity with the carriers, and the carriers at the QDs have shorter lifetime than they are in the wetting layers, so the carrier recombination will give preference to the QDs. It is shown that the distribution of the carriers could be easily controlled by adjusting the spacing layer thickness and the spacing layer doping concentration, so as to control the radiation rate of the two active layers of the dual-wavelength LEDs. Therefore, the spectrum-control of the dual-wavelength LED with QDs planted in QWs could be realized by adjusting the concentration of quantum dots, the thickness of the spacing layer and the doping concentration in the spacing layer. This article can provide guidance for the realization of the non-phosphor white LED.
    • 基金项目: 国家自然科学基金(批准号: 60877069)和广东省战略新兴产业专项资金 (批准号: 2011A081301004, 2012A080304006) 资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 60877069), the Science and Technology Key Program of Guangdong Province, China (Grant Nos. 2011A081301004, 2012A080304006).
    [1]

    Damilano B, Demolon P, Brault J, Huault T, Natail F, Massies J 2010 J. Appl. Phys. 108 073115

    [2]

    Pimputkar S, Speck J S, DenBaars S P, Nakamura S 2009 Nature Photonics 3 180

    [3]

    Qi Y D, Liang H, Tang W, Lu Z D, Lau K M 2004 J. Cryst. Growth 272 333

    [4]

    Gu X L, Guo X, Liang T, Lin Q M, Guo J, Wu D, Xu L H, Shen G D 2007 Acta Phys. Sin. 56 5531 (in Chinese) [顾晓玲, 郭霞, 梁庭, 林巧明, 郭晶, 吴迪, 徐丽华, 沈光地 2007 物理学报 56 5531]

    [5]

    Fuhrmann D, Rossow U, Netzel C, Bremers H, Ade G, Hinze P, Hangleiter A 2006 Phys. Stat. Sol. (c) 3 1966

    [6]

    Huang C F, Lu C F, Tang T Y, Huang J J, Yang C C 2007 Appl. Phys. Lett. 90 151122

    [7]

    Soh C B, Liu W, Teng J H, Chow S Y, Ang S S, Chua S J 2008 Appl. Phys. Lett. 92 261909

    [8]

    Hirayama H, Tanaka S, Ramvall P, Aoyagi Y 1998 Appl. Phys. Lett. 72 1736

    [9]

    Wang J, Nozaki M, Lachab M, Ishikawa Y, Qhalid Fareed R S,Wang T, Hao M, Sakai S 1999 Appl. Phys. Lett. 75 950

    [10]

    Zhao W, Wang L, Wang J X, Hao Z B, Luo Y 2011 J. Cryst. Growth 327 202

    [11]

    Zhang M, Bhattacharya P, Guo W 2010 Appl. Phys. Lett. 97 011103

    [12]

    Zhang Y Y, Fan G H 2011 Acta. Phys. Sin. 60 018502 (in Chinese) [张运炎, 范广涵 2011 物理学报 60 018502]

    [13]

    Zhang Y Y, Fan G H, Zhang Y, Zheng S W 2011 Acta. Phys. Sin. 60 028503 (in Chinese) [张运炎, 范广涵, 章勇, 郑树文 2011 物理学报 60 028503]

    [14]

    Liu X P, Fan G H, Zhang Y Y, Zheng S W, Gong C C,Wang Y L, Zhang T 2012 Acta. Phys. Sin. 61 138503 (in Chinese) [刘小平, 范广涵, 张运炎, 郑树文, 龚长春, 王永力, 张涛 2011 物理学报 61 138503]

    [15]

    Wang D Y, Sun H Q, Xie X Y, Zhang P J 2012 Acta. Phys. Sin. 61 227303 (in Chinese) [王度阳, 孙慧卿, 谢晓宇, 张盼君 2012 物理学报 61 227303]

    [16]

    Xia C S, Hu W D, Wang C, Li Z F, Chen X S, Lu W, Simon Z M, Li Z Q 2007 Opt. Quant. Electron. 38 1077

    [17]

    Li W J, Zhang B, Xu W L, Lu W 2009 Acta. Phys. Sin. 58 3421 (in Chinese) [李为军, 张波, 徐文兰, 陆卫 2009 物理学报 58 3421]

  • [1]

    Damilano B, Demolon P, Brault J, Huault T, Natail F, Massies J 2010 J. Appl. Phys. 108 073115

    [2]

    Pimputkar S, Speck J S, DenBaars S P, Nakamura S 2009 Nature Photonics 3 180

    [3]

    Qi Y D, Liang H, Tang W, Lu Z D, Lau K M 2004 J. Cryst. Growth 272 333

    [4]

    Gu X L, Guo X, Liang T, Lin Q M, Guo J, Wu D, Xu L H, Shen G D 2007 Acta Phys. Sin. 56 5531 (in Chinese) [顾晓玲, 郭霞, 梁庭, 林巧明, 郭晶, 吴迪, 徐丽华, 沈光地 2007 物理学报 56 5531]

    [5]

    Fuhrmann D, Rossow U, Netzel C, Bremers H, Ade G, Hinze P, Hangleiter A 2006 Phys. Stat. Sol. (c) 3 1966

    [6]

    Huang C F, Lu C F, Tang T Y, Huang J J, Yang C C 2007 Appl. Phys. Lett. 90 151122

    [7]

    Soh C B, Liu W, Teng J H, Chow S Y, Ang S S, Chua S J 2008 Appl. Phys. Lett. 92 261909

    [8]

    Hirayama H, Tanaka S, Ramvall P, Aoyagi Y 1998 Appl. Phys. Lett. 72 1736

    [9]

    Wang J, Nozaki M, Lachab M, Ishikawa Y, Qhalid Fareed R S,Wang T, Hao M, Sakai S 1999 Appl. Phys. Lett. 75 950

    [10]

    Zhao W, Wang L, Wang J X, Hao Z B, Luo Y 2011 J. Cryst. Growth 327 202

    [11]

    Zhang M, Bhattacharya P, Guo W 2010 Appl. Phys. Lett. 97 011103

    [12]

    Zhang Y Y, Fan G H 2011 Acta. Phys. Sin. 60 018502 (in Chinese) [张运炎, 范广涵 2011 物理学报 60 018502]

    [13]

    Zhang Y Y, Fan G H, Zhang Y, Zheng S W 2011 Acta. Phys. Sin. 60 028503 (in Chinese) [张运炎, 范广涵, 章勇, 郑树文 2011 物理学报 60 028503]

    [14]

    Liu X P, Fan G H, Zhang Y Y, Zheng S W, Gong C C,Wang Y L, Zhang T 2012 Acta. Phys. Sin. 61 138503 (in Chinese) [刘小平, 范广涵, 张运炎, 郑树文, 龚长春, 王永力, 张涛 2011 物理学报 61 138503]

    [15]

    Wang D Y, Sun H Q, Xie X Y, Zhang P J 2012 Acta. Phys. Sin. 61 227303 (in Chinese) [王度阳, 孙慧卿, 谢晓宇, 张盼君 2012 物理学报 61 227303]

    [16]

    Xia C S, Hu W D, Wang C, Li Z F, Chen X S, Lu W, Simon Z M, Li Z Q 2007 Opt. Quant. Electron. 38 1077

    [17]

    Li W J, Zhang B, Xu W L, Lu W 2009 Acta. Phys. Sin. 58 3421 (in Chinese) [李为军, 张波, 徐文兰, 陆卫 2009 物理学报 58 3421]

  • [1] 李元和, 卓志瑶, 王健, 黄君辉, 李叔伦, 倪海桥, 牛智川, 窦秀明, 孙宝权. 金纳米颗粒调控量子点激子自发辐射速率. 物理学报, 2022, 71(6): 067804. doi: 10.7498/aps.71.20211863
    [2] 李元和, 窦秀明, 孙宝权. 金纳米颗粒调控量子点激子自发辐射速率. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211863
    [3] 方宇, 吴幸智, 陈永强, 杨俊义, 宋瑛林. Ge掺杂GaN晶体双光子诱导超快载流子动力学的飞秒瞬态吸收光谱研究. 物理学报, 2020, 69(16): 168701. doi: 10.7498/aps.69.20200397
    [4] 程成, 王国栋, 程潇羽. 室温下表面极化效应对量子点带隙和吸收峰波长的影响. 物理学报, 2017, 66(13): 137802. doi: 10.7498/aps.66.137802
    [5] 乔建良, 徐源, 高有堂, 牛军, 常本康. 反射式变掺杂负电子亲和势GaN光电阴极量子效率研究. 物理学报, 2017, 66(6): 067903. doi: 10.7498/aps.66.067903
    [6] 吴海娜, 孙雪, 公卫江, 易光宇. 电子-声子相互作用对平行双量子点体系热电效应的影响. 物理学报, 2015, 64(7): 077301. doi: 10.7498/aps.64.077301
    [7] 白继元, 贺泽龙, 杨守斌. 平行耦合双量子点分子A-B干涉仪的电荷及其自旋输运. 物理学报, 2014, 63(1): 017303. doi: 10.7498/aps.63.017303
    [8] 周楠, 郑强, 胡北辰, 石德权, 苗春雨, 马春雨, 梁红伟, 郝胜智, 张庆瑜. 表面态调控对GaN荧光光谱的影响. 物理学报, 2014, 63(13): 137802. doi: 10.7498/aps.63.137802
    [9] 黄斌斌, 熊传兵, 张超宇, 黄基锋, 王光绪, 汤英文, 全知觉, 徐龙权, 张萌, 王立, 方文卿, 刘军林, 江风益. 硅基板和铜基板垂直结构GaN基LED变温变电流发光性能的研究. 物理学报, 2014, 63(21): 217806. doi: 10.7498/aps.63.217806
    [10] 栗军, 刘玉, 平婧, 叶银, 李新奇. 双量子点Aharonov-Bohm干涉系统输运性质的大偏离分析. 物理学报, 2012, 61(13): 137202. doi: 10.7498/aps.61.137202
    [11] 王艳文, 吴花蕊. 闪锌矿GaN/AlGaN量子点中激子态及光学性质的研究. 物理学报, 2012, 61(10): 106102. doi: 10.7498/aps.61.106102
    [12] 陈峻, 范广涵, 张运炎. 渐变型量子阱垒层厚度对GaN基双波长发光二极管发光特性调控的研究. 物理学报, 2012, 61(17): 178504. doi: 10.7498/aps.61.178504
    [13] 王度阳, 孙慧卿, 解晓宇, 张盼君. GaN基LED量子阱内量子点发光性质的模拟分析. 物理学报, 2012, 61(22): 227303. doi: 10.7498/aps.61.227303
    [14] 张运炎, 范广涵, 章勇, 郑树文. 掺杂GaN间隔层对双波长发光二极管光谱调控作用的研究. 物理学报, 2011, 60(2): 028503. doi: 10.7498/aps.60.028503
    [15] 张运炎, 范广涵. 不同掺杂类型的GaN间隔层和量子阱垒层对双波长LED作用的研究. 物理学报, 2011, 60(1): 018502. doi: 10.7498/aps.60.018502
    [16] 邓懿, 赵德刚, 吴亮亮, 刘宗顺, 朱建军, 江德生, 张书明, 梁骏吾. 器件参数对GaN基n+-GaN/i-Alx Ga1-xN/n+-GaN结构紫外和红外双色探测器中紫外响应的影响. 物理学报, 2010, 59(12): 8903-8909. doi: 10.7498/aps.59.8903
    [17] 金豫浙, 胡益培, 曾祥华, 杨义军. GaN基多量子阱蓝光LED的γ辐照效应. 物理学报, 2010, 59(2): 1258-1262. doi: 10.7498/aps.59.1258
    [18] 申 晔, 邢怀中, 俞建国, 吕 斌, 茅惠兵, 王基庆. 极化诱导的内建电场对Mn δ掺杂的GaN/AlGaN量子阱居里温度的调制. 物理学报, 2007, 56(6): 3453-3457. doi: 10.7498/aps.56.3453
    [19] 刘仕锋, 秦国刚, 尤力平, 张纪才, 傅竹西, 戴 伦. 在双热舟化学气相沉积系统中通过掺In技术生长GaN纳米线和纳米锥. 物理学报, 2005, 54(9): 4329-4333. doi: 10.7498/aps.54.4329
    [20] 李培咸, 郝 跃, 范 隆, 张进城, 张金凤, 张晓菊. 基于量子微扰的AlGaN/GaN异质结波函数半解析求解. 物理学报, 2003, 52(12): 2985-2988. doi: 10.7498/aps.52.2985
计量
  • 文章访问数:  3737
  • PDF下载量:  1259
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-12-11
  • 修回日期:  2013-01-30
  • 刊出日期:  2013-06-05

含有量子点的双波长LED的光谱调控

  • 1. 广东省微纳光子功能材料与器件重点实验室, 华南师范大学, 光电子材料与技术研究所, 广州 510631
    基金项目: 国家自然科学基金(批准号: 60877069)和广东省战略新兴产业专项资金 (批准号: 2011A081301004, 2012A080304006) 资助的课题.

摘要: 本文通过对含有高In组分量子点的双波长LED进行了模拟计算, 并对器件的能带结构、载流子浓度、复合速率和辐射光谱进行了研究. 通过对器件结构的调整与对比, 发现蓝绿双波长LED的绿光量子阱中加入高In组分量子点后可以拓宽辐射光谱, 使LED光谱具有更高的显色指数, 为实现无荧光粉的白光LED提供指导. 量子点对载流子具有很强的束缚能力, 并且载流子在量子点处具有更短的寿命, 载流子优先在量子点处复合, 量子点处所对应的黄光与量子阱润湿层所对应的绿光的比例随量子点浓度的增大而增大, 载流子浓度较低时以量子点处的黄光辐射为主, 载流子浓度变大后, 量子点复合逐渐达到饱和, 绿光辐射开始占据主导. 对间隔层厚度和间隔层掺杂浓度的调节可以很方便地调控载流子的分布, 从而实现对含有量子点的双波长LED两个活性层辐射速率的调控. 结果表明, 通过对量子点浓度、间隔层厚度、间隔层掺杂浓度的控节可以很好地实现对LED辐射光谱的调控作用.

English Abstract

参考文献 (17)

目录

    /

    返回文章
    返回