搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碱金属阳离子对[B3O7]型非线性光学晶体结晶习性的影响

王迪 张德明 张季 王小飞 张庆礼 万松明 殷绍唐

引用本文:
Citation:

碱金属阳离子对[B3O7]型非线性光学晶体结晶习性的影响

王迪, 张德明, 张季, 王小飞, 张庆礼, 万松明, 殷绍唐

The influence of alkali metal ions on crystallization habits of nonlinear optical crystal containing [B3O7] groups

Wang Di, Zhang De-Ming, Zhang Ji, Wang Xiao-Fei, Zhang Qin-Li, Wan Song-Ming, Yin Shao-Tang
PDF
导出引用
  • 本文利用高温拉曼光谱技术和从头计算的方法, 研究了LiB3O5和CsB3O5晶体高温熔融体的结构, 分析了碱金属阳离子对熔体结构的影响, 以及熔体结构的差异与LiB3O5和CsB3O5晶体结晶习性的联系. 结果表明: LiB3O5和CsB3O5晶体高温熔融体中的结构基团 主要为B3Ø7和B3Ø6两种不同类型的硼氧六元环; 环内BØ4 四面体的数量影响了六元环呼吸振动峰的拉曼频率, 随BØ4四面体数量的增加六元环呼吸振动峰向低频移动; LiB3O5晶体高温熔融体中, BØ4四面体含量相对较多; 然而, 离子半径相对较大的Cs+离子却阻碍了熔体中BØ4四面体的形成, 造成CsB3O5晶体高温熔融体中BØ4/BØ3比值的降低. 结合LiB3O5和CsB3O5晶体生长动力学过程的分析 (Wang D, Wan S M et al. 2011 Cryst. Eng. Comm. 13 5239), 阳离子的不同导致高温熔体中BØ4四面体数量的差异, 被认为是影响LiB3O5和CsB3O5晶体结晶习性的重要因素, 有效降低高温熔体中BØ4四面体的数量, 将是实现LiB3O5晶体生长的关键条件.
    LiB3O5 and CsB3O5 are two excellent nonlinear optical borate crystals containing [B3O7] groups. With a difference of aikali metal ions in structure, LiB3O5 and CsB3O5 exhibit different crystallization habits. The former is an incongruent compound, which cannot crystallize from its melt; however, the latter is a congruent compound obtained by cooling its melt directly. In this work, using Raman spectroscopy and ab initio calculation, the structures of LiB3O5 and CsB3O5 melts have been investigated, and then the influence of alkali metal ions on melt structures is discussed, finally, the relationship between crystallization habits of LiB3O5 and CsB3O5 and their melts is proposed. Results suggest that the boron oxide species of LiB3O5 and CsB3O5 melts are in the form of six-membered rings B3Ø7 and B3Ø6 (Ø represents a bridging oxygen); Raman frequency of the symmetric breathing vibration of six-membered rings shifts to low frequency with the addition of BØ4 tetrahedrons in rings; the relatively large amount of BØ4 tetrahedrons is found in LiB3O5 melts. However, Cs+ ions with larger ion radius hinder the formation of BØ4 tetrahedrons, and then reduc, the BØ4/BØ3 ratio of the melt. Finally, considering the growth mechanism of LiB3O5 and CsB3O5 crystals (Wang D, Wan S M et al. 2011 Cryst. Eng. Comm. 13 5239), we propose that the amount of BØ4 tetrahedrons in melts, which is influenced by aikali metal ions, determines LiB3O5 and CsB3O5 crystallization habits, therefore, and suggest the reduction of BØ4 tetrahedrons in melts is an effective way to crystallize LiB3O5.
    • 基金项目: 国家自然科学基金 (批准号: 50932005, 51102239, 90922003, 51172236) 资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 50932005, 51102239, 90922003, 51172236).
    [1]

    Chen C T 2001 Journal of Synthetic Crystals 30 36 (in Chinese) [陈创天 2001 人工晶体学报 30 36]

    [2]

    Nikogosyan D N 1994 Appl. Phys. A: Solids Surf. 58 181

    [3]

    Wu Y C, Fu P Z, Wang J X, Xu Z Y, Zhang L, Kong Y F, Chen C T 1997 Opt. Lett. 22 1840

    [4]

    Wu Y C 2001 Journal of Synthetic Crystals 30 43 (in Chinese) [吴以成 2001 人工晶体学报 30 43]

    [5]

    Shumov D P, Nenov A T, Nihtianova D D 1996 J. Cryst. Growth 169 519

    [6]

    Kima H G, Kang J K, Lee S H, Chung S J 1998 J. Cryst. Growth 187 455

    [7]

    Parfeniuk C, Samarasekera I V, Weinberg F 1996 J. Cryst. Growth 158 514

    [8]

    Parfeniuk C, Samarasekera I V, Weinberg F, Edel J, Fjeldsted K, Lent B 1996 J. Cryst. Growth 158 523

    [9]

    Wu Y C, Sasaki T, Nakai S, Yokotani A, Tang H, Chen C T 1993 Appl. Phys. Lett. 62 2614

    [10]

    Zhou W P, Wan S M, Yin S T, Zhang Q L, You J L, Wang Y Y 2009 Acta Phys. Sin. 58 570 (in Chinese) [周文平, 万松明, 殷绍唐, 张庆礼, 尤静林, 王媛媛 2009 物理学报 58 570]

    [11]

    Elwell D, Scheel H J 2011 Crystal Growth from High-Temperature Solutions (Digital Version) (London: Academic Press INC) p16

    [12]

    Wang D, Wan S M, Yin S T, Zhang Q L, You J L, Zhang G C, Fu P Z 2011 Cryst. Eng. Comm. 13 5239

    [13]

    Hou M, You J L, Simon P, Zhang G C, Wan S M, Wang Y Y, Ji Z F, Wang L H, Fu P Z, Wu Y C, Yin S T 2011 Cryst. Eng. Comm. 13 3030

    [14]

    Wan S M, Zhang X, Zhao S J, Zhang Q L, You J L, Lu L, Fu P Z, Wu Y C, Yin S T 2007 Cryst. Growth Des. 8 412

    [15]

    Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti G L, Cococcioni M, Dabo I, Dal Corso A, Fabris S, Fratesi G, Gironcoli S D, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen A P, Smo-gunov A, Umari P, Wentzcovitch R M 2009 J. Phys.: Condens. Matter 21 395502

    [16]

    Koenig H, Hoppe R 1978 Z. Anorg. Allg. Chem. 439 71

    [17]

    Zhang G Y, Lan G X, Wang Y F 2001 Lattice Vibration Spectroscopy (Second Edition) (Beijing: Higher Education Press) p79 (in Chinese) [张光寅, 蓝国祥, 王玉芳 2001 晶格振动光谱学 (第2版) (北京: 高等教育出版社) 第79页]

    [18]

    Xiong G S, Lan G X, Wang H F, Huang C E 1993 J. Raman Spectrosc. 24 785

    [19]

    Wang Y F, Liu J J, Hu S F, Lan G X, Fu P Z, Wang Z X 1999 J. Raman Spectrosc. 30 519

    [20]

    Meera B N, Ramakrishna J 1993 J. Non-Cryst. Solids 159 1

    [21]

    Galeener F L, Lucovsky G, Mikkelsen Jr J C 1980 Phys. Rev. B 22 3983

    [22]

    Osipov A A, Osipova L M 2009 Glass Phys. Chem. 35 132

    [23]

    Irikura K K, Johnson R D, Kacker R N 2005 J. Phys. Chem. 109 8430

    [24]

    Chryssikos G D, Kamitsos E I, Karakassides M A 1990 Phys. Chem. Glasses 31 109

    [25]

    Wang D, Zhang J, Zhang D M, Wan S M, Zhang Q L, Sun D L, Yin S T 2013 Cryst. Eng. Comm. 15 356

  • [1]

    Chen C T 2001 Journal of Synthetic Crystals 30 36 (in Chinese) [陈创天 2001 人工晶体学报 30 36]

    [2]

    Nikogosyan D N 1994 Appl. Phys. A: Solids Surf. 58 181

    [3]

    Wu Y C, Fu P Z, Wang J X, Xu Z Y, Zhang L, Kong Y F, Chen C T 1997 Opt. Lett. 22 1840

    [4]

    Wu Y C 2001 Journal of Synthetic Crystals 30 43 (in Chinese) [吴以成 2001 人工晶体学报 30 43]

    [5]

    Shumov D P, Nenov A T, Nihtianova D D 1996 J. Cryst. Growth 169 519

    [6]

    Kima H G, Kang J K, Lee S H, Chung S J 1998 J. Cryst. Growth 187 455

    [7]

    Parfeniuk C, Samarasekera I V, Weinberg F 1996 J. Cryst. Growth 158 514

    [8]

    Parfeniuk C, Samarasekera I V, Weinberg F, Edel J, Fjeldsted K, Lent B 1996 J. Cryst. Growth 158 523

    [9]

    Wu Y C, Sasaki T, Nakai S, Yokotani A, Tang H, Chen C T 1993 Appl. Phys. Lett. 62 2614

    [10]

    Zhou W P, Wan S M, Yin S T, Zhang Q L, You J L, Wang Y Y 2009 Acta Phys. Sin. 58 570 (in Chinese) [周文平, 万松明, 殷绍唐, 张庆礼, 尤静林, 王媛媛 2009 物理学报 58 570]

    [11]

    Elwell D, Scheel H J 2011 Crystal Growth from High-Temperature Solutions (Digital Version) (London: Academic Press INC) p16

    [12]

    Wang D, Wan S M, Yin S T, Zhang Q L, You J L, Zhang G C, Fu P Z 2011 Cryst. Eng. Comm. 13 5239

    [13]

    Hou M, You J L, Simon P, Zhang G C, Wan S M, Wang Y Y, Ji Z F, Wang L H, Fu P Z, Wu Y C, Yin S T 2011 Cryst. Eng. Comm. 13 3030

    [14]

    Wan S M, Zhang X, Zhao S J, Zhang Q L, You J L, Lu L, Fu P Z, Wu Y C, Yin S T 2007 Cryst. Growth Des. 8 412

    [15]

    Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti G L, Cococcioni M, Dabo I, Dal Corso A, Fabris S, Fratesi G, Gironcoli S D, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen A P, Smo-gunov A, Umari P, Wentzcovitch R M 2009 J. Phys.: Condens. Matter 21 395502

    [16]

    Koenig H, Hoppe R 1978 Z. Anorg. Allg. Chem. 439 71

    [17]

    Zhang G Y, Lan G X, Wang Y F 2001 Lattice Vibration Spectroscopy (Second Edition) (Beijing: Higher Education Press) p79 (in Chinese) [张光寅, 蓝国祥, 王玉芳 2001 晶格振动光谱学 (第2版) (北京: 高等教育出版社) 第79页]

    [18]

    Xiong G S, Lan G X, Wang H F, Huang C E 1993 J. Raman Spectrosc. 24 785

    [19]

    Wang Y F, Liu J J, Hu S F, Lan G X, Fu P Z, Wang Z X 1999 J. Raman Spectrosc. 30 519

    [20]

    Meera B N, Ramakrishna J 1993 J. Non-Cryst. Solids 159 1

    [21]

    Galeener F L, Lucovsky G, Mikkelsen Jr J C 1980 Phys. Rev. B 22 3983

    [22]

    Osipov A A, Osipova L M 2009 Glass Phys. Chem. 35 132

    [23]

    Irikura K K, Johnson R D, Kacker R N 2005 J. Phys. Chem. 109 8430

    [24]

    Chryssikos G D, Kamitsos E I, Karakassides M A 1990 Phys. Chem. Glasses 31 109

    [25]

    Wang D, Zhang J, Zhang D M, Wan S M, Zhang Q L, Sun D L, Yin S T 2013 Cryst. Eng. Comm. 15 356

  • [1] 张茂笛, 焦陈寅, 文婷, 李靓, 裴胜海, 王曾晖, 夏娟. 二硫化铼的原位高压偏振拉曼光谱. 物理学报, 2022, 71(14): 140702. doi: 10.7498/aps.71.20220053
    [2] 李加红, 孙贵花, 张庆礼, 王小飞, 张德明, 刘文鹏, 高进云, 郑丽丽, 韩松, 陈照, 殷绍唐. 退火气氛对GdScO3和Yb:GdScO3晶体的结构和光谱性质的影响. 物理学报, 2022, 71(16): 164206. doi: 10.7498/aps.71.20220196
    [3] 宋梦婷, 张悦, 黄文娟, 候华毅, 陈相柏. 拉曼光谱研究退火氧化镍中二阶磁振子散射增强. 物理学报, 2021, 70(16): 167201. doi: 10.7498/aps.70.20210454
    [4] 丁燕, 钟粤华, 郭俊青, 卢毅, 罗昊宇, 沈云, 邓晓华. 黑磷各向异性拉曼光谱表征及电学特性. 物理学报, 2021, 70(3): 037801. doi: 10.7498/aps.70.20201271
    [5] 王昕, 康哲铭, 刘龙, 范贤光. 基于中值滤波和非均匀B样条的拉曼光谱基线校正算法. 物理学报, 2020, 69(20): 200701. doi: 10.7498/aps.69.20200552
    [6] 王鹏华, 唐吉龙, 亢玉彬, 方铉, 房丹, 王登魁, 林逢源, 王晓华, 魏志鹏. GaAs纳米线晶体结构及光学特性. 物理学报, 2019, 68(8): 087803. doi: 10.7498/aps.68.20182116
    [7] 李酽, 张琳彬, 李娇, 连晓雪, 朱俊武. 电场条件下氧化锌结晶特性及极化产物的拉曼光谱分析. 物理学报, 2019, 68(7): 070701. doi: 10.7498/aps.68.20181961
    [8] 张莉, 郑海洋, 王颖萍, 丁蕾, 方黎. 远距离探测拉曼光谱特性. 物理学报, 2016, 65(5): 054206. doi: 10.7498/aps.65.054206
    [9] 周海亮, 顾庆天, 张清华, 刘宝安, 朱丽丽, 张立松, 张芳, 许心光, 王正平, 孙洵, 赵显. NH4H2PO4和ND4D2PO4晶体微结构的拉曼光谱研究. 物理学报, 2015, 64(19): 197801. doi: 10.7498/aps.64.197801
    [10] 陈元正, 李硕, 李亮, 门志伟, 李占龙, 孙成林, 里佐威, 周密. HoVO4相变的高压拉曼光谱和理论计算研究. 物理学报, 2013, 62(24): 246101. doi: 10.7498/aps.62.246101
    [11] 张季, 王迪, 张德明, 张庆礼, 万松明, 孙敦陆, 殷绍唐. BaBPO5晶体晶格振动光谱研究与第一性原理计算. 物理学报, 2013, 62(3): 037802. doi: 10.7498/aps.62.037802
    [12] 周密, 李占龙, 陆国会, 李东飞, 孙成林, 高淑琴, 里佐威. 高压拉曼光谱方法研究联苯分子费米共振. 物理学报, 2011, 60(5): 050702. doi: 10.7498/aps.60.050702
    [13] 王丽红, 尤静林, 王媛媛, 郑少波, 西蒙·派特里克, 侯敏, 季自方. 六方晶型MgTiO3温致微结构变化及其原位拉曼光谱研究. 物理学报, 2011, 60(10): 104209. doi: 10.7498/aps.60.104209
    [14] 侯碧辉, 菅彦珍, 王雅丽, 张尔攀, 傅佩珍, 汪力, 钟任斌. PbB4O7 晶体的太赫兹光谱和软光学声子. 物理学报, 2010, 59(7): 4640-4645. doi: 10.7498/aps.59.4640
    [15] 周文平, 万松明, 张 霞, 张庆礼, 孙敦陆, 仇怀利, 尤静林, 殷绍唐. PbMoO4晶体生长基元和生长习性的高温拉曼光谱研究. 物理学报, 2008, 57(11): 7305-7309. doi: 10.7498/aps.57.7305
    [16] 丁 硕, 刘玉龙, 萧季驹. 不同晶粒尺寸SnO2纳米粒子的拉曼光谱研究. 物理学报, 2005, 54(9): 4416-4421. doi: 10.7498/aps.54.4416
    [17] 徐存英, 张鹏翔, 严 磊. 表面修饰的钛酸钡的拉曼光谱. 物理学报, 2005, 54(11): 5089-5092. doi: 10.7498/aps.54.5089
    [18] 白 莹, 兰燕娜, 莫育俊. 拉曼光谱法计算多孔硅样品的温度. 物理学报, 2005, 54(10): 4654-4658. doi: 10.7498/aps.54.4654
    [19] 孙敦陆, 仇怀利, 杭 寅, 张连瀚, 祝世宁, 王爱华, 殷绍唐. 化学计量比LiNbO3晶体的激光显微拉曼光谱研究. 物理学报, 2004, 53(7): 2270-2274. doi: 10.7498/aps.53.2270
    [20] 丁 佩, 梁二军, 张红瑞, 刘一真, 刘 慧, 郭新勇, 杜祖亮. “锥形嵌套"结构CNx纳米管的生长机理及拉曼光谱研究. 物理学报, 2003, 52(1): 237-241. doi: 10.7498/aps.52.237
计量
  • 文章访问数:  3027
  • PDF下载量:  276
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-12-23
  • 修回日期:  2013-04-16
  • 刊出日期:  2013-08-05

碱金属阳离子对[B3O7]型非线性光学晶体结晶习性的影响

  • 1. 中国科学院安徽光学精密机械研究所, 安徽省光子器件与材料重点实验室, 合肥 230031
    基金项目: 国家自然科学基金 (批准号: 50932005, 51102239, 90922003, 51172236) 资助的课题.

摘要: 本文利用高温拉曼光谱技术和从头计算的方法, 研究了LiB3O5和CsB3O5晶体高温熔融体的结构, 分析了碱金属阳离子对熔体结构的影响, 以及熔体结构的差异与LiB3O5和CsB3O5晶体结晶习性的联系. 结果表明: LiB3O5和CsB3O5晶体高温熔融体中的结构基团 主要为B3Ø7和B3Ø6两种不同类型的硼氧六元环; 环内BØ4 四面体的数量影响了六元环呼吸振动峰的拉曼频率, 随BØ4四面体数量的增加六元环呼吸振动峰向低频移动; LiB3O5晶体高温熔融体中, BØ4四面体含量相对较多; 然而, 离子半径相对较大的Cs+离子却阻碍了熔体中BØ4四面体的形成, 造成CsB3O5晶体高温熔融体中BØ4/BØ3比值的降低. 结合LiB3O5和CsB3O5晶体生长动力学过程的分析 (Wang D, Wan S M et al. 2011 Cryst. Eng. Comm. 13 5239), 阳离子的不同导致高温熔体中BØ4四面体数量的差异, 被认为是影响LiB3O5和CsB3O5晶体结晶习性的重要因素, 有效降低高温熔体中BØ4四面体的数量, 将是实现LiB3O5晶体生长的关键条件.

English Abstract

参考文献 (25)

目录

    /

    返回文章
    返回