搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氦、氘对纯铁辐照缺陷的影响

姜少宁 万发荣 龙毅 刘传歆 詹倩 大貫惣明

引用本文:
Citation:

氦、氘对纯铁辐照缺陷的影响

姜少宁, 万发荣, 龙毅, 刘传歆, 詹倩, 大貫惣明

Effects of helium and deuterium on irradiation damage in pure iron

Jiang Shao-Ning, Wan Fa-Rong, Long Yi, Liu Chuan-Xin, Zhan Qian, Ohnuki Somei
PDF
导出引用
  • 在核聚变堆的辐照环境中, 核嬗变产物氢、氦对结构材料的抗辐照性能将产生很大的影响. 本实验采用离子注入和电子辐照模拟研究了氦和氘对具有体心立方结构的纯铁的影响. 采用离子加速器在室温分别对纯铁注入氦离子和氘离子, 经500℃时效1 h后在高压电镜下进行电子辐照.结果表明: 室温注氦和室温注氘的纯铁在500℃时效后分别形成间隙型位错环和空位型位错环. 在电子辐照下, 间隙型位错环吸收间隙原子而不断长大, 而空位型位错环吸收间隙原子不断缩小. 通过计算位错环的变化速率发现, 空位型位错环比间隙型位错环吸收了更多的间隙原子, 即室温注氘纯铁的位错偏压比室温注氦纯铁的偏压参量大, 这意味着相同实验条件下空位型位错环对辐照肿胀的贡献大于间隙型位错环对辐照肿胀的贡献. 利用氦-空位复合体和氘-空位复合体的结构, 分析了注氦和注氘后在纯铁中形成不同类型位错环的原因.
    Productions of transmute elements (hydrogen and helium) have great influences on the resistance to irradiation damage in structural materials for fusion reactor. The evolution of irradiation damage in bcc iron is investigated with ion implantation and electron irradiation. Pure iron implanted by He+ or D+ ions at room temperature are aged at 500℃ for 1 h, then irradiated by electrons under high voltage electron microscope. The results show that interstitial loops (i-loop) and vacancy loops (v-loop) are formed in He+-implanted iron and D+-implanted iron respectively. Under electron irradiation, due to the absorption of interstitials atom, i-loop grows up while v-loop shrinks. According to the rate of variation of dislocation loop, v-loop absorbs more interstitial atoms, i.e., the dislocation bias of D+-implanted iron is larger than that of He+-implanted iron, which means that the v-loop has the more contributions to irradiation swelling than i-loop. The causes of the different natures of dislocation loops formed in D+-implanted iron and He+-implanted iron are analyzed by the structures of He-V and D-V complexes.
    • 基金项目: 国家重点基础研究发展计划(批准号: 2011GB108002);国家自然科学基金(批准号: 50971030, 11275023, 51071021) 和日本学术振兴会Asia-Core计划资助的课题.
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2011GB108002), the National Natural Science Foundation of China (Grant Nos. 50971030, 11275023, 51071021), and the Asia Core University Program of Japan Society for the Promotion of Science.
    [1]

    Klueh R L, Nelson A T 2007 J. Nucl. Mater. 371 37

    [2]

    Hunn J D, Lee E H, Byun T S, Mansur L K 2000 J. Nucl. Mater. 282 131

    [3]

    Wolfeden A 1976 Micron 7 55

    [4]

    Osetsky Y N, Bacon D J, Serra A, Singh B N, Golubov S I 2000 J. Nucl. Mater. 276 65

    [5]

    Gao Y Z, Sun G R, Zhang T H, Ji C Z, Yang J H 1990 Chin. Phys. Lett. 8 82

    [6]

    Zinkle S J 2004 APS Division of Plasma Physics 46th Annual Meeting Savannah, GA, November 15-19, 2004

    [7]

    Arakawa K, Mori H, Ono K 2002 J. Nucl. Mater. 307-311 272

    [8]

    Huang Y N, Wan F R, Jiao Z J 2011 Acta Phys. Sin. 60 036802 (in Chinese) [黄依娜, 万发荣, 焦志杰 2011 物理学报 60 036802]

    [9]

    Deo C S, Okuniewski M A, Srivilliputhur S G, Maloy S A, Baskes M I, Michael R J, Stubbins J F 2007 J. Nucl. Mater. 361 141

    [10]

    Stewart D M, Osetsky Y N, Stoller R E, Golubov S I, Seletskai T, Kamenski P J 2010 Philos. Mag. 90 935

    [11]

    Zheng H 2007 Acta. Phys. Sin. 56 389 (in Chinese) [郑晖 2007 物理学报 56 389]

    [12]

    Chen J, Jung P, Hoffelner W, Ullmaier H 2008 Acta. Mater. 56 250

    [13]

    Alonso E, Caturla M J, Díaz de la Rubia T 2000 J. Nucl. Mater. 276 221

    [14]

    Gary S W 2007 Fundamentas of Radiation Materials Science (Newyork: Springer) p144

    [15]

    Gilbert M R, Yao Z, Kirk M A, Jenkins M L, Dudarev S L 2009 J. Nucl. Mater. 386-388 36

    [16]

    Trinkaus H, Singh B 2003 J. Nucl. Mater. 323 229

    [17]

    Jiao Z J 1998 M. S. Dissertation (Beijing: University of Science and Technology Beijing) (in Chinese) [焦志杰 1998 硕士学位论文(北京: 北京科技大学)]

    [18]

    Wolfenden A 1998 Micron 9 211

    [19]

    Wan F R, Zhu X F, Xiao J M, Yuan Y 1990 Acta Phys. Sin. 39 1093 (in Chinese) [万发荣, 朱晓峰, 肖纪美, 袁逸 1990物理学报 39 1093]

    [20]

    Myers S M, Richards P M, Wampler W R 1985 J. Nucl. Mater. 165 9

    [21]

    Yao B, Edwards D J, Kurtz R J, Odette G R, Yamamoto T 2011 Fusion Reactor Materials Program Oak Ridge, US, December 31, 2011 pp85-89

  • [1]

    Klueh R L, Nelson A T 2007 J. Nucl. Mater. 371 37

    [2]

    Hunn J D, Lee E H, Byun T S, Mansur L K 2000 J. Nucl. Mater. 282 131

    [3]

    Wolfeden A 1976 Micron 7 55

    [4]

    Osetsky Y N, Bacon D J, Serra A, Singh B N, Golubov S I 2000 J. Nucl. Mater. 276 65

    [5]

    Gao Y Z, Sun G R, Zhang T H, Ji C Z, Yang J H 1990 Chin. Phys. Lett. 8 82

    [6]

    Zinkle S J 2004 APS Division of Plasma Physics 46th Annual Meeting Savannah, GA, November 15-19, 2004

    [7]

    Arakawa K, Mori H, Ono K 2002 J. Nucl. Mater. 307-311 272

    [8]

    Huang Y N, Wan F R, Jiao Z J 2011 Acta Phys. Sin. 60 036802 (in Chinese) [黄依娜, 万发荣, 焦志杰 2011 物理学报 60 036802]

    [9]

    Deo C S, Okuniewski M A, Srivilliputhur S G, Maloy S A, Baskes M I, Michael R J, Stubbins J F 2007 J. Nucl. Mater. 361 141

    [10]

    Stewart D M, Osetsky Y N, Stoller R E, Golubov S I, Seletskai T, Kamenski P J 2010 Philos. Mag. 90 935

    [11]

    Zheng H 2007 Acta. Phys. Sin. 56 389 (in Chinese) [郑晖 2007 物理学报 56 389]

    [12]

    Chen J, Jung P, Hoffelner W, Ullmaier H 2008 Acta. Mater. 56 250

    [13]

    Alonso E, Caturla M J, Díaz de la Rubia T 2000 J. Nucl. Mater. 276 221

    [14]

    Gary S W 2007 Fundamentas of Radiation Materials Science (Newyork: Springer) p144

    [15]

    Gilbert M R, Yao Z, Kirk M A, Jenkins M L, Dudarev S L 2009 J. Nucl. Mater. 386-388 36

    [16]

    Trinkaus H, Singh B 2003 J. Nucl. Mater. 323 229

    [17]

    Jiao Z J 1998 M. S. Dissertation (Beijing: University of Science and Technology Beijing) (in Chinese) [焦志杰 1998 硕士学位论文(北京: 北京科技大学)]

    [18]

    Wolfenden A 1998 Micron 9 211

    [19]

    Wan F R, Zhu X F, Xiao J M, Yuan Y 1990 Acta Phys. Sin. 39 1093 (in Chinese) [万发荣, 朱晓峰, 肖纪美, 袁逸 1990物理学报 39 1093]

    [20]

    Myers S M, Richards P M, Wampler W R 1985 J. Nucl. Mater. 165 9

    [21]

    Yao B, Edwards D J, Kurtz R J, Odette G R, Yamamoto T 2011 Fusion Reactor Materials Program Oak Ridge, US, December 31, 2011 pp85-89

  • [1] 魏雯静, 高旭东, 吕亮亮, 许楠楠, 李公平. 中子对碲锌镉辐照损伤模拟研究. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20221195
    [2] 李然然, 张一帆, 殷玉鹏, 渡边英雄, 韩文妥, 易晓鸥, 刘平平, 张高伟, 詹倩, 万发荣. 注氢纯铝中间隙型位错环一维迁移现象的原位观察. 物理学报, 2022, 71(1): 016102. doi: 10.7498/aps.71.20211229
    [3] 王瑾, 贺新福, 曹晗, 贾丽霞, 豆艳坤, 杨文. 不同温度下bcc-Fe中螺位错滑移及其与½[\begin{document}${{11}}\bar {{1}}$\end{document}]位错环相互作用行为. 物理学报, 2021, 70(6): 068701. doi: 10.7498/aps.70.20201659
    [4] 李然然, 张一帆, 殷玉鹏, 渡边英雄, 韩文妥, 易晓鸥, 刘平平, 张高伟, 詹倩, 万发荣. 注氢纯铝中间隙型位错环一维迁移现象的原位观察. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211229
    [5] 朱特, 曹兴忠. 正电子湮没谱学在金属材料氢/氦行为研究中的应用. 物理学报, 2020, 69(17): 177801. doi: 10.7498/aps.69.20200724
    [6] 梁晋洁, 高宁, 李玉红. 体心立方Fe中\begin{document}${ \langle 100 \rangle}$\end{document}位错环对微裂纹扩展影响的分子动力学研究. 物理学报, 2020, 69(11): 116102. doi: 10.7498/aps.69.20200317
    [7] 梁晋洁, 高宁, 李玉红. 表面效应对铁\begin{document}${\left\langle 100 \right\rangle} $\end{document}间隙型位错环的影响. 物理学报, 2020, 69(3): 036101. doi: 10.7498/aps.69.20191379
    [8] 高云亮, 朱芫江, 李进平. Al辐照损伤初期的第一性原理研究. 物理学报, 2017, 66(5): 057104. doi: 10.7498/aps.66.057104
    [9] 崔丽娟, 高进, 杜玉峰, 张高伟, 张磊, 龙毅, 杨善武, 詹倩, 万发荣. 氢离子辐照纯钒中形成的位错环. 物理学报, 2016, 65(6): 066102. doi: 10.7498/aps.65.066102
    [10] 张宝玲, 宋小勇, 侯氢, 汪俊. 高密度氦相变的分子动力学研究. 物理学报, 2015, 64(1): 016202. doi: 10.7498/aps.64.016202
    [11] 张其黎, 张弓木, 赵艳红, 刘海风. 氘、氦及其混合物状态方程第一原理研究. 物理学报, 2015, 64(9): 094702. doi: 10.7498/aps.64.094702
    [12] 王欣欣, 张颖, 周洪波, 王金龙. 铌对钨中氦行为影响的第一性原理研究. 物理学报, 2014, 63(4): 046103. doi: 10.7498/aps.63.046103
    [13] 崔振国, 勾成俊, 侯氢, 毛莉, 周晓松. 低能中子在锆中产生的辐照损伤的计算机模拟研究. 物理学报, 2013, 62(15): 156105. doi: 10.7498/aps.62.156105
    [14] 李仁顺, 周宇璐, 张宝玲, 邓爱红, 侯氢. 氦在材料中基于扩散机理的热释放特征. 物理学报, 2011, 60(4): 046604. doi: 10.7498/aps.60.046604
    [15] 吴宜勇, 岳龙, 胡建民, 蓝慕杰, 肖景东, 杨德庄, 何世禹, 张忠卫, 王训春, 钱勇, 陈鸣波. 位移损伤剂量法评估空间GaAs/Ge太阳电池辐照损伤过程. 物理学报, 2011, 60(9): 098110. doi: 10.7498/aps.60.098110
    [16] 汪俊, 张宝玲, 周宇璐, 侯氢. 金属钨中氦行为的分子动力学模拟. 物理学报, 2011, 60(10): 106601. doi: 10.7498/aps.60.106601
    [17] 卢果, 方步青, 张广财, 许爱国. 有限温度下位错环的脱体现象. 物理学报, 2009, 58(11): 7934-7946. doi: 10.7498/aps.58.7934
    [18] 王海燕, 祝文军, 宋振飞, 刘绍军, 陈向荣, 贺红亮. 氦泡对铝的弹性性质的影响. 物理学报, 2008, 57(6): 3703-3708. doi: 10.7498/aps.57.3703
    [19] 张 颖, 陈其峰, 顾云军, 蔡灵仓, 卢铁城. 部分电离稠密氦等离子体物态方程的自洽变分计算. 物理学报, 2007, 56(3): 1318-1324. doi: 10.7498/aps.56.1318
    [20] 郑思孝, 罗顺忠, 刘仲阳, 龙兴贵, 王培禄, 彭述明, 廖小东, 刘 宁. 纳米晶钛膜中氦注入的保持剂量. 物理学报, 2004, 53(2): 555-560. doi: 10.7498/aps.53.555
计量
  • 文章访问数:  3836
  • PDF下载量:  814
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-12-26
  • 修回日期:  2013-05-06
  • 刊出日期:  2013-08-05

氦、氘对纯铁辐照缺陷的影响

  • 1. 北京科技大学材料科学与工程学院, 北京 100083;
  • 2. 北海道大学工学研究院, 札幌 060-8628, 日本
    基金项目: 国家重点基础研究发展计划(批准号: 2011GB108002);国家自然科学基金(批准号: 50971030, 11275023, 51071021) 和日本学术振兴会Asia-Core计划资助的课题.

摘要: 在核聚变堆的辐照环境中, 核嬗变产物氢、氦对结构材料的抗辐照性能将产生很大的影响. 本实验采用离子注入和电子辐照模拟研究了氦和氘对具有体心立方结构的纯铁的影响. 采用离子加速器在室温分别对纯铁注入氦离子和氘离子, 经500℃时效1 h后在高压电镜下进行电子辐照.结果表明: 室温注氦和室温注氘的纯铁在500℃时效后分别形成间隙型位错环和空位型位错环. 在电子辐照下, 间隙型位错环吸收间隙原子而不断长大, 而空位型位错环吸收间隙原子不断缩小. 通过计算位错环的变化速率发现, 空位型位错环比间隙型位错环吸收了更多的间隙原子, 即室温注氘纯铁的位错偏压比室温注氦纯铁的偏压参量大, 这意味着相同实验条件下空位型位错环对辐照肿胀的贡献大于间隙型位错环对辐照肿胀的贡献. 利用氦-空位复合体和氘-空位复合体的结构, 分析了注氦和注氘后在纯铁中形成不同类型位错环的原因.

English Abstract

参考文献 (21)

目录

    /

    返回文章
    返回