搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

小攻角下三维细长体定常空化形态研究

张忠宇 姚熊亮 张阿漫

引用本文:
Citation:

小攻角下三维细长体定常空化形态研究

张忠宇, 姚熊亮, 张阿漫

Cavitation shape of the three-dimensional slender at a small attack angle in a steady flow

Zhang Zhong-Yu, Yao Xiong-Liang, Zhang A-Man
PDF
导出引用
  • 基于边界元方法, 使空泡表面和细长体表面分别满足Dirichlet 边界条件和Neumann边界条件, 数值迭代获得小攻角下三维细长体的定常空化形态. 采用线性三角形单元, 将控制点布置在网格节点上, 应用局部正交坐标系并采用迭代方法获得空泡表面的速度势, 进而通过边界积分方程确定空泡厚度的分布. 采用拉格朗日插值方法得到空泡末端的厚度, 避免了迭代过程中网格的重新划分. 数值结果与实验值符合良好, 验证了该方法的合理性. 系统研究了空化数、攻角以及锥角对于三维细长体空化形态的影响规律. 数值结果表明: 攻角使得细长体的空化形态呈现不对称性, 出现空泡向背流面“堆积”的现象; 而空化数越小或锥角越大, 空泡形态的不对称性将越严重.
    In this paper, based on the boundary element method, the cavitation shape of the three-dimensional slender at a small attack angle in a steady flow is simulated through the iterative method, while Dirichlet boundary conditions and Neumann boundary conditions are satisfied in cavitation and slender respectively. The linear triangular elements are adopted and the control points are arranged in grid nodes. The velocity potential for cavity surface is determined through an iterative method in a local orthogonal coordinate system, and then the distribution of cavitation thickness can be determined by the boundary integral equation. To prevent the remeshing operation in the iterative process, the Lagrange interpolation method is used to determine the thickness at the end of cavity. The numerical results are in good agreement with the experimental data. The influence of those on cavitation shape of the three-dimensional slender are investigated, such as cavitation number, attack angle and cone angle. Numerical results show that the cavitation shape of the three-dimensional slender is asymmetric at an attack angle and is analogous to the cavitation stacking in the lee side. While with the decrease in the cavity number or the increase in cone angle, the asymmetry for the cavity shape will be more serious.
    • 基金项目: 国家自然科学基金重点项目(批准号: 50939002)资助的课题.
    • Funds: Project supported by the Key Program of the National Natural Science Foundation of China (Grant No. 50939002).
    [1]

    Ingber M S, Hailey C E 1992 Int. J. Numerical Methods in Fluids 15 251

    [2]

    Wolfe W P, Hailey C E, Oberkampf W 1989 J. Fluids Eng. 111 300

    [3]

    Huang B, Wang G Y, Hu C L, Gao D M 2012 Engin. Mech. 29 320 (in Chinese) [黄彪, 王国玉, 胡常莉, 高德明 2012 工程力学 29 320]

    [4]

    Wang Y W, Huang C G, Du T Z, Wu X Q, Fang X, Liang N G, Wei Y P 2012 Chin. Phys. Lett. 29 014601

    [5]

    Liu X M, He J, Lu J, Ni X W 2008 Chin. Phys. B 17 2574

    [6]

    Wang C H, Cheng J C 2013 Chin. Phys. B 22 014304

    [7]

    Singhal A K, Athavale M M, Li H Y, Jiang Y 2002 J. Fluids Eng. 124 617

    [8]

    Srinivasan V, Salazar A J, Saito K 2009 Appl. Math. Model. 33 1529

    [9]

    Chen Y, Lu C J, Guo J H 2010 J. Hydrodyn. 22 893

    [10]

    Zhang L X, Khoo B C 2013 Comput. Fluids 73 1

    [11]

    Rastgou H, Saedodin S 2013 J. Fluids Struct. DOI: 10.1016/j. jfluidstructs. 2013.05.006

    [12]

    Owis F M, Nayfeh A H 2004 Eur. J. Mech. B: Fluids 23 339

    [13]

    Zhang X M, Zhou C Y, Shams I, Liu J Q 2009 Acta Phys. Sin. 58 8406 (in Chinese) [张新明, 周超英, Shams I, 刘家琦 2009 物理学报 58 8406]

    [14]

    Kinnas S A, Fine N E 1991 In Boundary Integral Methods Theory and Applications 10 289

    [15]

    Kinnas S A, Fine N E 1993 J. Fluid Mech. 254 151

    [16]

    Arakeri V H 1975 J. Fluid Mech. 68 779

    [17]

    Wu T Y 1972 Annu. Rev. Fluid. Mech. 4 243

    [18]

    Leng H J, Lu C J 2002 J. Shanghai Jiaotong Univ. 36 395 (in Chinese) [冷海军, 鲁传敬 2002 上海交通大学学报 36 395]

    [19]

    Jia C J, Xu H, Zhang Y W 2004 Ship Sci. Technol. 26 16 ( in Chinese) [贾彩娟, 许晖, 张宇文 2004 舰船科学技术 26 16]

    [20]

    Chen J H, Weng Y C 2005 J. Chin. Instit. Engin. 28 735

    [21]

    Rashidi I, Pasandide M, Ghafoorianfar N, Mansour M 2008 Proceedings of the 12th Asian Congress of Fluid Mechanics Korea, August 18-21, 2008 p1

    [22]

    Liu Y L, Zhang A M, Wang S P, Tian Z L 2013 Acta Phys. Sin. 62 144703 (in Chinese) [刘云龙, 张阿漫, 王诗平, 田昭丽 2013 物理学报 62 144703]

    [23]

    Zhang A M, Wang S P, Wu G X 2013 Eng. Anal. Bound. Elem. DOI: 10.1016/j.enganabound.2013.04.013

    [24]

    Rouse H, McNown J S 1948 Cavitat. Pressure Distribut. Head Forms at Zero Angle of Yaw (Iowa City: The State University of Iowa)

  • [1]

    Ingber M S, Hailey C E 1992 Int. J. Numerical Methods in Fluids 15 251

    [2]

    Wolfe W P, Hailey C E, Oberkampf W 1989 J. Fluids Eng. 111 300

    [3]

    Huang B, Wang G Y, Hu C L, Gao D M 2012 Engin. Mech. 29 320 (in Chinese) [黄彪, 王国玉, 胡常莉, 高德明 2012 工程力学 29 320]

    [4]

    Wang Y W, Huang C G, Du T Z, Wu X Q, Fang X, Liang N G, Wei Y P 2012 Chin. Phys. Lett. 29 014601

    [5]

    Liu X M, He J, Lu J, Ni X W 2008 Chin. Phys. B 17 2574

    [6]

    Wang C H, Cheng J C 2013 Chin. Phys. B 22 014304

    [7]

    Singhal A K, Athavale M M, Li H Y, Jiang Y 2002 J. Fluids Eng. 124 617

    [8]

    Srinivasan V, Salazar A J, Saito K 2009 Appl. Math. Model. 33 1529

    [9]

    Chen Y, Lu C J, Guo J H 2010 J. Hydrodyn. 22 893

    [10]

    Zhang L X, Khoo B C 2013 Comput. Fluids 73 1

    [11]

    Rastgou H, Saedodin S 2013 J. Fluids Struct. DOI: 10.1016/j. jfluidstructs. 2013.05.006

    [12]

    Owis F M, Nayfeh A H 2004 Eur. J. Mech. B: Fluids 23 339

    [13]

    Zhang X M, Zhou C Y, Shams I, Liu J Q 2009 Acta Phys. Sin. 58 8406 (in Chinese) [张新明, 周超英, Shams I, 刘家琦 2009 物理学报 58 8406]

    [14]

    Kinnas S A, Fine N E 1991 In Boundary Integral Methods Theory and Applications 10 289

    [15]

    Kinnas S A, Fine N E 1993 J. Fluid Mech. 254 151

    [16]

    Arakeri V H 1975 J. Fluid Mech. 68 779

    [17]

    Wu T Y 1972 Annu. Rev. Fluid. Mech. 4 243

    [18]

    Leng H J, Lu C J 2002 J. Shanghai Jiaotong Univ. 36 395 (in Chinese) [冷海军, 鲁传敬 2002 上海交通大学学报 36 395]

    [19]

    Jia C J, Xu H, Zhang Y W 2004 Ship Sci. Technol. 26 16 ( in Chinese) [贾彩娟, 许晖, 张宇文 2004 舰船科学技术 26 16]

    [20]

    Chen J H, Weng Y C 2005 J. Chin. Instit. Engin. 28 735

    [21]

    Rashidi I, Pasandide M, Ghafoorianfar N, Mansour M 2008 Proceedings of the 12th Asian Congress of Fluid Mechanics Korea, August 18-21, 2008 p1

    [22]

    Liu Y L, Zhang A M, Wang S P, Tian Z L 2013 Acta Phys. Sin. 62 144703 (in Chinese) [刘云龙, 张阿漫, 王诗平, 田昭丽 2013 物理学报 62 144703]

    [23]

    Zhang A M, Wang S P, Wu G X 2013 Eng. Anal. Bound. Elem. DOI: 10.1016/j.enganabound.2013.04.013

    [24]

    Rouse H, McNown J S 1948 Cavitat. Pressure Distribut. Head Forms at Zero Angle of Yaw (Iowa City: The State University of Iowa)

  • [1] 蒋城露, 王昂, 赵锋, 尚海林, 张明建, 刘福生, 刘其军. 基于三维离散元方法探究奥克托今颗粒落锤撞击点火机理. 物理学报, 2019, 68(22): 228301. doi: 10.7498/aps.68.20190993
    [2] 刘畅, 刘祥瑞. 强三维拓扑绝缘体与磁性拓扑绝缘体的角分辨光电子能谱学研究进展. 物理学报, 2019, 68(22): 227901. doi: 10.7498/aps.68.20191450
    [3] 范爽, 张亚萍, 王帆, 高云龙, 钱晓凡, 张永安, 许蔚, 曹良才. 面向真彩色三维显示的分层角谱算法和Gerchberg-Saxton算法研究. 物理学报, 2018, 67(9): 094203. doi: 10.7498/aps.67.20172464
    [4] 陆昌根, 朱晓清, 沈露予. 三维边界层内诱导横流失稳模态的感受性机理. 物理学报, 2017, 66(20): 204702. doi: 10.7498/aps.66.204702
    [5] 沈露予, 陆昌根. 三维边界层内定常横流涡的感受性研究. 物理学报, 2017, 66(1): 014703. doi: 10.7498/aps.66.014703
    [6] 胡洋, 王秋良, 李毅, 朱旭晨, 牛超群. 基于边界元方法的超导核磁共振成像设备高阶轴向匀场线圈优化算法. 物理学报, 2016, 65(21): 218301. doi: 10.7498/aps.65.218301
    [7] 胡俊, 游磊. 三维空间行人疏散的元胞自动机模型. 物理学报, 2014, 63(8): 080507. doi: 10.7498/aps.63.080507
    [8] 袁都奇. 三维简谐势阱中玻色-爱因斯坦凝聚的边界效应. 物理学报, 2014, 63(17): 170501. doi: 10.7498/aps.63.170501
    [9] 郑树琳, 宋亦旭, 孙晓民. 基于三维元胞模型的刻蚀工艺表面演化方法. 物理学报, 2013, 62(10): 108201. doi: 10.7498/aps.62.108201
    [10] 吴海军, 蒋伟康, 鲁文波. 三维声学多层快速多极子边界元及其应用. 物理学报, 2012, 61(5): 054301. doi: 10.7498/aps.61.054301
    [11] 赵啦啦, 刘初升, 闫俊霞, 徐志鹏. 颗粒分层过程三维离散元法模拟研究. 物理学报, 2010, 59(3): 1870-1876. doi: 10.7498/aps.59.1870
    [12] 张新明, 周超英, Islam Shams, 刘家琦. 用格子Boltzmann方法数值模拟三维空化现象. 物理学报, 2009, 58(12): 8406-8414. doi: 10.7498/aps.58.8406
    [13] 毛义军, 祁大同. 开口/封闭薄壳体声辐射和散射的统一边界积分方程解法. 物理学报, 2009, 58(10): 6764-6769. doi: 10.7498/aps.58.6764
    [14] 何海伦, 刘永军, 莫军, 宋金宝. 二维水槽中岩石坠落激发表面波的生成机制. 物理学报, 2009, 58(10): 6743-6749. doi: 10.7498/aps.58.6743
    [15] 戴保东, 程玉民. 势问题的径向基函数——局部边界积分方程方法. 物理学报, 2007, 56(2): 597-603. doi: 10.7498/aps.56.597
    [16] 禹思敏. 用三角波序列产生三维多涡卷混沌吸引子的电路实验. 物理学报, 2005, 54(4): 1500-1509. doi: 10.7498/aps.54.1500
    [17] 陈昌远. 三维各向同性谐振子径向矩阵元的递推关系. 物理学报, 2000, 49(4): 607-609. doi: 10.7498/aps.49.607
    [18] 王晓, 蔡建华. 三维紧束缚电子气的等离激元理论. 物理学报, 1993, 42(7): 1149-1156. doi: 10.7498/aps.42.1149
    [19] 王晓;蔡建华. 三维紧束缚电子气的等离激元理论. 物理学报, 1991, 40(7): 1149-1156. doi: 10.7498/aps.40.1149
    [20] 滕保华. 三维Ising模型的Green函数方法处理. 物理学报, 1991, 40(5): 826-832. doi: 10.7498/aps.40.826
计量
  • 文章访问数:  2770
  • PDF下载量:  405
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-06-21
  • 修回日期:  2013-07-17
  • 刊出日期:  2013-10-05

小攻角下三维细长体定常空化形态研究

  • 1. 哈尔滨工程大学船舶工程学院, 哈尔滨 150001
    基金项目: 国家自然科学基金重点项目(批准号: 50939002)资助的课题.

摘要: 基于边界元方法, 使空泡表面和细长体表面分别满足Dirichlet 边界条件和Neumann边界条件, 数值迭代获得小攻角下三维细长体的定常空化形态. 采用线性三角形单元, 将控制点布置在网格节点上, 应用局部正交坐标系并采用迭代方法获得空泡表面的速度势, 进而通过边界积分方程确定空泡厚度的分布. 采用拉格朗日插值方法得到空泡末端的厚度, 避免了迭代过程中网格的重新划分. 数值结果与实验值符合良好, 验证了该方法的合理性. 系统研究了空化数、攻角以及锥角对于三维细长体空化形态的影响规律. 数值结果表明: 攻角使得细长体的空化形态呈现不对称性, 出现空泡向背流面“堆积”的现象; 而空化数越小或锥角越大, 空泡形态的不对称性将越严重.

English Abstract

参考文献 (24)

目录

    /

    返回文章
    返回