搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

PS自由基X2Π态的势能曲线和光谱性质

刘慧 邢伟 施德恒 孙金锋 朱遵略

引用本文:
Citation:

PS自由基X2Π态的势能曲线和光谱性质

刘慧, 邢伟, 施德恒, 孙金锋, 朱遵略

Potential energy curve and spectroscopic properties of PS (X2Π) radical

Liu Hui, Xing Wei, Shi De-Heng, Sun Jin-Feng, Zhu Zun Lüe
PDF
导出引用
  • 采用Davidson修正的内收缩多参考组态相互作用方法(icMRCI+Q) 结合Dunning等的相关一致基计算了PS自由基X2Π 态势能曲线. 利用三阶Douglas-Kroll Hamilton近似结合cc-pV5Z相对论收缩基进行了相对论修正计算. 利用aug-cc-pCV5Z基组对势能曲线进行了核价相关修正计算, 并将总能量外推至完全基组极限. 拟合得到了X2Π态的主要光谱常数Re, ωe, ωexe, ωeye, Be, αe 和De, 与实验结果符合较好. 利用Breit-Pauli算符, 研究了旋轨耦合效应对势能曲线的影响, 得到了两条Ω 态的势能曲线. 详细分析了在旋轨耦合计算中, 核电子相关与冻结核近似对电子结构和光谱性质的影响. 在icMRCI+Q/56+DK+CV+SO理论水平上得到了两个Ω 态的主要光谱常数Te, Re, ωe, ωexe, ωeye, Be 和αe, 结果与实验结果一致. 在平衡位置处, 本文的X2Π态旋轨耦合能量分裂值为 323.73 cm-1, 与实验结果321.93 cm-1较为一致. 通过求解双原子分子核运动的径向Schrödinger方程, 找到了无转动PS自由基X2Π态及其两个Ω 态的全部振动态, 还分别计算了它们相应的振动能级和惯性转动常数等分子常数, 这些结果与已有的实验值一致.
    The potential energy curve (PEC) of ground X2Π state of PS radical is studied using highly accurate internally contracted multireference configuration interaction approach with the Davidson modification. The Dunning’s correlation-consistent basis sets are used for the present study.To improve the quality of PECs, scalar relativistic and core-valence correlation corrections are considered. Scalar relativistic correction calculations are performed using the third-order Douglas-Kroll Hamiltonian approximation at the level of a cc-pV5Z basis set. Core-valence correlation corrections are calculated with an aug-cc-pCV5Z basis set. All the PECs are extrapolated to the complete basis set limit. Using the PEC, the spectroscopic parameters (Re, ωe, ωexe, ωeye, Be, αe and De) of the X2Π state of PS are determined and compared with those reported in the literature. With the Breit-Pauli operator, the PECs of two Ω states of the ground Λ-S state are calculated. Based on these PECs, the spectroscopic parameters (Te, Re, ωe, ωexe, ωeye, Be and αe) of two Ω states of PS are obtained. Compared with those reported in the literature, the present results are accurate. The vibration manifolds are evaluated for each Ω and Λ-S state of non-rotation PS radical by numerically solving the radical Schrödinger equation of nuclear motion. For each vibrational state, the vibrational level and inertial rotation constants are obtained, which are in excellent accordance with the experimental findings.
    • 基金项目: 国家自然科学基金(批准号: 61077073)和河南省科技计划(批准号: 122300410303)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61077073) and the Science and Technology Program of Henan Province, China (Grant No. 122300410303).
    [1]

    Ohishi M, Yamamoto S, Saito S, Kawaguchi K, Suzuki H, Kaifu N, Ishikawa S I, Takano S, Tsuji T, Uno W 1988 Astrophys. J. 77 135

    [2]

    Dressler K, Miescher E 1955 Proc. Phys. Soc. A 68 542

    [3]

    Dressler K 1955 Helv. Phys. Acta 28 563

    [4]

    Narasimham N A, Balasubramanian T K 1971 J. Mol. Spectrosc. 37 371

    [5]

    Jenouvrier A, Pascat B 1978 Can. J. Phys. 56 1088

    [6]

    Lin K K, Balling L C, Wright J J 1987 Chem. Phys. Lett. 138 168

    [7]

    Kawaguchi K, Hirota E, Ohishi M, Suzuki H, Takano S, Yamamoto S, Saito S 1988 J. Mol. Spectrosc. 130 81

    [8]

    Kama S P, Bruna P J, Grein F 1988 J. Phys. B 21 1303

    [9]

    Woon D E, Dunning T H 1994 J. Chem. Phys. 101 8877

    [10]

    Moussaoui Y, Ouamerali O, De Maré G R 1998 J. Mol. Struct. (Theochem) 425 237

    [11]

    Kalcher J 2002 Phys. Chem. Chem. Phys. 4 3311

    [12]

    Yaghlane S B, Francisco J S, Hochlaf M 2012 J. Chem. Phys. 136 244309

    [13]

    Werner H J, Knowles P J 1988 J. Chem. Phys. 89 5803

    [14]

    Knowles P J, Werner H J 1988 Chem. Phys. Lett. 145 514

    [15]

    Wang J M, Feng H Q, Sun J F, Shi D H 2012 Chin. Phys. B 21 023102

    [16]

    Zhang X N, Shi D H, Sun J F, Zhu Z L 2011 Chin. Phys. B 20 043105

    [17]

    Langhoff S R, Davidson E R 1974 Int. J. Quantum Chem. 8 61

    [18]

    Richartz A, Buenker R J, Peyerimhoff S D 1978 Chem. Phys. 28 305

    [19]

    Dunning T H 1989 J. Chem. Phys. 90 1007

    [20]

    van Mourik T, Dunning T H 2000 Int. J. Quantum Chem. 76 205

    [21]

    De Jong W A, Harrison R J, Dixon D A 2001 J. Chem. Phys. 114 48

    [22]

    Reiher M, Wolf A 2004 J. Chem. Phys. 121 2037

    [23]

    Wolf A, Reiher M, Hess B A 2002 J. Chem. Phys. 117 9215

    [24]

    Liu H, Shi D H, Sun J F, Zhu Z L 2013 J. Quant. Spectrosc. Rad. Transfer. 121 9

  • [1]

    Ohishi M, Yamamoto S, Saito S, Kawaguchi K, Suzuki H, Kaifu N, Ishikawa S I, Takano S, Tsuji T, Uno W 1988 Astrophys. J. 77 135

    [2]

    Dressler K, Miescher E 1955 Proc. Phys. Soc. A 68 542

    [3]

    Dressler K 1955 Helv. Phys. Acta 28 563

    [4]

    Narasimham N A, Balasubramanian T K 1971 J. Mol. Spectrosc. 37 371

    [5]

    Jenouvrier A, Pascat B 1978 Can. J. Phys. 56 1088

    [6]

    Lin K K, Balling L C, Wright J J 1987 Chem. Phys. Lett. 138 168

    [7]

    Kawaguchi K, Hirota E, Ohishi M, Suzuki H, Takano S, Yamamoto S, Saito S 1988 J. Mol. Spectrosc. 130 81

    [8]

    Kama S P, Bruna P J, Grein F 1988 J. Phys. B 21 1303

    [9]

    Woon D E, Dunning T H 1994 J. Chem. Phys. 101 8877

    [10]

    Moussaoui Y, Ouamerali O, De Maré G R 1998 J. Mol. Struct. (Theochem) 425 237

    [11]

    Kalcher J 2002 Phys. Chem. Chem. Phys. 4 3311

    [12]

    Yaghlane S B, Francisco J S, Hochlaf M 2012 J. Chem. Phys. 136 244309

    [13]

    Werner H J, Knowles P J 1988 J. Chem. Phys. 89 5803

    [14]

    Knowles P J, Werner H J 1988 Chem. Phys. Lett. 145 514

    [15]

    Wang J M, Feng H Q, Sun J F, Shi D H 2012 Chin. Phys. B 21 023102

    [16]

    Zhang X N, Shi D H, Sun J F, Zhu Z L 2011 Chin. Phys. B 20 043105

    [17]

    Langhoff S R, Davidson E R 1974 Int. J. Quantum Chem. 8 61

    [18]

    Richartz A, Buenker R J, Peyerimhoff S D 1978 Chem. Phys. 28 305

    [19]

    Dunning T H 1989 J. Chem. Phys. 90 1007

    [20]

    van Mourik T, Dunning T H 2000 Int. J. Quantum Chem. 76 205

    [21]

    De Jong W A, Harrison R J, Dixon D A 2001 J. Chem. Phys. 114 48

    [22]

    Reiher M, Wolf A 2004 J. Chem. Phys. 121 2037

    [23]

    Wolf A, Reiher M, Hess B A 2002 J. Chem. Phys. 117 9215

    [24]

    Liu H, Shi D H, Sun J F, Zhu Z L 2013 J. Quant. Spectrosc. Rad. Transfer. 121 9

  • [1] 邢伟, 李胜周, 孙金锋, 李文涛, 朱遵略, 刘锋. BH分子8个Λ-S态和23个Ω态光谱性质的理论研究. 物理学报, 2022, 71(10): 103101. doi: 10.7498/aps.71.20220038
    [2] 高峰, 张红, 张常哲, 赵文丽, 孟庆田. SiH+(X1Σ+)的势能曲线、光谱常数、振转能级和自旋-轨道耦合理论研究. 物理学报, 2021, 70(15): 153301. doi: 10.7498/aps.70.20210450
    [3] 李晨曦, 郭迎春, 王兵兵. O2分子B3u-态势能曲线的从头计算. 物理学报, 2017, 66(10): 103101. doi: 10.7498/aps.66.103101
    [4] 黄多辉, 万明杰, 王藩侯, 杨俊升, 曹启龙, 王金花. GeS分子基态和低激发态的势能曲线与光谱性质. 物理学报, 2016, 65(6): 063102. doi: 10.7498/aps.65.063102
    [5] 刘慧, 邢伟, 施德恒, 孙金锋, 朱遵略. BCl分子X1Σ+, a3Π和A1Π态的光谱性质. 物理学报, 2014, 63(12): 123102. doi: 10.7498/aps.63.123102
    [6] 黄多辉, 王藩侯, 杨俊升, 万明杰, 曹启龙, 杨明超. SnO分子的X1Σ+, a3Π和A1Π态的势能曲线与光谱性质. 物理学报, 2014, 63(8): 083102. doi: 10.7498/aps.63.083102
    [7] 郭雨薇, 张晓美, 刘彦磊, 刘玉芳. BP+基态和激发态的势能曲线和光谱性质的研究. 物理学报, 2013, 62(19): 193301. doi: 10.7498/aps.62.193301
    [8] 陈恒杰. LiAl分子基态、激发态势能曲线和振动能级. 物理学报, 2013, 62(8): 083301. doi: 10.7498/aps.62.083301
    [9] 李松, 韩立波, 陈善俊, 段传喜. SN-分子离子的势能函数和光谱常数研究. 物理学报, 2013, 62(11): 113102. doi: 10.7498/aps.62.113102
    [10] 于坤, 张晓美, 刘玉芳. 从头计算研究BCl+基态和激发态的势能曲线和光谱性质. 物理学报, 2013, 62(6): 063301. doi: 10.7498/aps.62.063301
    [11] 邢伟, 刘慧, 施德恒, 孙金锋, 朱遵略. MRCI+Q理论研究SiSe分子X1Σ+和A1Π电子态的光谱常数和分子常数. 物理学报, 2013, 62(4): 043101. doi: 10.7498/aps.62.043101
    [12] 朱遵略, 郎建华, 乔浩. SF分子基态及低激发态势能函数与光谱常数的研究. 物理学报, 2013, 62(16): 163103. doi: 10.7498/aps.62.163103
    [13] 施德恒, 牛相宏, 孙金锋, 朱遵略. BF自由基X1+和a3态光谱常数和分子常数研究. 物理学报, 2012, 61(9): 093105. doi: 10.7498/aps.61.093105
    [14] 王杰敏, 孙金锋, 施德恒, 朱遵略, 李文涛. PH, PD和PT分子常数理论研究. 物理学报, 2012, 61(6): 063104. doi: 10.7498/aps.61.063104
    [15] 邢伟, 刘慧, 施德恒, 孙金锋, 朱遵略. SO+离子b4∑-态光谱常数和分子常数研究. 物理学报, 2012, 61(24): 243102. doi: 10.7498/aps.61.243102
    [16] 刘慧, 邢伟, 施德恒, 朱遵略, 孙金锋. 用MRCI方法研究CS+同位素离子X2Σ+和A2Π态的光谱常数与分子常数. 物理学报, 2011, 60(4): 043102. doi: 10.7498/aps.60.043102
    [17] 王杰敏, 孙金锋. 采用多参考组态相互作用方法研究AsN( X1 + )自由基的光谱常数与分子常数. 物理学报, 2011, 60(12): 123103. doi: 10.7498/aps.60.123103
    [18] 刘慧, 施德恒, 孙金锋, 朱遵略. MRCI方法研究CSe(X1Σ+)自由基的光谱常数和分子常数. 物理学报, 2011, 60(6): 063101. doi: 10.7498/aps.60.063101
    [19] 王新强, 杨传路, 苏涛, 王美山. BH分子基态和激发态解析势能函数和光谱性质. 物理学报, 2009, 58(10): 6873-6878. doi: 10.7498/aps.58.6873
    [20] 钱 琪, 杨传路, 高 峰, 张晓燕. 多参考组态相互作用方法计算研究XOn(X=S, Cl;n=0,±1)的解析势能函数和光谱常数. 物理学报, 2007, 56(8): 4420-4427. doi: 10.7498/aps.56.4420
计量
  • 文章访问数:  3009
  • PDF下载量:  723
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-06-04
  • 修回日期:  2013-07-07
  • 刊出日期:  2013-10-05

PS自由基X2Π态的势能曲线和光谱性质

  • 1. 信阳师范学院物理电子工程学院, 信阳 464000;
  • 2. 河南师范大学物理与信息工程学院, 新乡 453007
    基金项目: 国家自然科学基金(批准号: 61077073)和河南省科技计划(批准号: 122300410303)资助的课题.

摘要: 采用Davidson修正的内收缩多参考组态相互作用方法(icMRCI+Q) 结合Dunning等的相关一致基计算了PS自由基X2Π 态势能曲线. 利用三阶Douglas-Kroll Hamilton近似结合cc-pV5Z相对论收缩基进行了相对论修正计算. 利用aug-cc-pCV5Z基组对势能曲线进行了核价相关修正计算, 并将总能量外推至完全基组极限. 拟合得到了X2Π态的主要光谱常数Re, ωe, ωexe, ωeye, Be, αe 和De, 与实验结果符合较好. 利用Breit-Pauli算符, 研究了旋轨耦合效应对势能曲线的影响, 得到了两条Ω 态的势能曲线. 详细分析了在旋轨耦合计算中, 核电子相关与冻结核近似对电子结构和光谱性质的影响. 在icMRCI+Q/56+DK+CV+SO理论水平上得到了两个Ω 态的主要光谱常数Te, Re, ωe, ωexe, ωeye, Be 和αe, 结果与实验结果一致. 在平衡位置处, 本文的X2Π态旋轨耦合能量分裂值为 323.73 cm-1, 与实验结果321.93 cm-1较为一致. 通过求解双原子分子核运动的径向Schrödinger方程, 找到了无转动PS自由基X2Π态及其两个Ω 态的全部振动态, 还分别计算了它们相应的振动能级和惯性转动常数等分子常数, 这些结果与已有的实验值一致.

English Abstract

参考文献 (24)

目录

    /

    返回文章
    返回