搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种性能稳定的新型频率选择表面及其微带天线应用

袁子东 高军 曹祥玉 杨欢欢 杨群 李文强 商楷

引用本文:
Citation:

一种性能稳定的新型频率选择表面及其微带天线应用

袁子东, 高军, 曹祥玉, 杨欢欢, 杨群, 李文强, 商楷

A novel frequency selective surface with stable performance and its application in microstrip antenna

Yuan Zi-Dong, Gao Jun, Cao Xiang-Yu, Yang Huan-Huan, Yang Qun, Li Wen-Qiang, Shang Kai
PDF
导出引用
  • 设计了一种基于分形树结构的高性能频率选择表面(frequency selective surface,FSS),并将其作为微带天线的空间滤波器,同时改善天线的辐射与散射性能. 该FSS单元是由两层金属及其中间介质组成,上、下层金属采用金属柱连结,整体构成树枝状分形结构. 通过优化参数,得到了一种宽带、极化无关、宽入射角、小型化的超薄FSS,厚度只有约0.017λ. 将该FSS应用于微带天线后,天线的相对带宽拓展到40%,工作频段内的增益得到改善,9.6 GHz时,天线的增益提高了6.7 dB,同时,天线工作频带内的雷达散射截面(radar cross section,RCS)也得到了明显减缩,最大减缩为12.7 dB. 实验结果与仿真结果符合得较好,证实了该空间滤波器具有提高宽带天线增益、增强天线定向性、改善天线带宽与降低天线带内RCS的效果,可以应用于宽带天线带内辐射与散射性能的同时改善.
    A novel frequency selective surface(FSS) with stable performance is designed and applied to microstrip antenna. The FSS cell is composed of two metallic layers separated by a dielectric spacer. The top and bottom layers connected with metallic cylinders form the fractal dendritic model. By optimizing the geometric parameters of the model, an ultra-thin FSS spatial filter is obtained, whose thickness is only 0.017λ, with wideband, polarization insensitive, wide-incident angle, and miniaturization properties. When applying the radome to microstrip antenna, the bandwidth of the antenna is improved to 40%, the gain is enhanced in the whole operating frequency band, especially at 9.6 GHz, the gain is increased by 6.7 dB; at the same time, the in-band radar cross section(RCS) is reduced significantly, and the largest reduction exceeds 12.7 dB. Experimental results are in good agreement with the simulated ones, which verifies that the novel FSS spatial filter can be used to increase the gain of broadband antenna, enhance the directivity, improve the bandwidth, and reduce the in-band RCS; to sum up, it can be applied to broadband antennas to improve their radiation as well as scattering performance at one time.
    • 基金项目: 国家自然科学基金(批准号:61271100)、陕西省自然科学基金研究重点项目(批准号:2010JZ010)和陕西省自然科学基础研究计划项目(批准号:2012JM8003)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61271100), the Key Program of the Natural Science Foudation of Shaanxi Province, China (Grant No.2010JZ010), and the Natural Science Basic Research of Shaanxi Province, China (Grant No. 2012JM8003).
    [1]

    Munk B A 2000 Frequency Selective Surfaces Theory and Design (New York: Wiley) p28

    [2]

    Rajesh N, Malathi K, Sanjay B, Ramprabhu S, Sandeepkumar P, Jayaram K P 2013 IEEE Antennas And Wireless Propagation Letters 12 718

    [3]

    Chen Y, Zhao D, Wang Y, Shu W 2012 Chin. Phys. B 21 058401

    [4]

    Gao J S, Feng X G, Sun L C, Jia H Y 2009 Acta Phys. Sin. 58 505 (in Chinese) [高劲松, 冯晓国, 孙连春, 贾宏燕 2009 物理学报 58 505]

    [5]

    Tang G M, Miao J G, Dong J M, Hu X Q 2012 Acta Phys. Sin. 61 118401 (in Chinese) [唐光明, 苗俊刚, 董金明, 胡晓晴 2012 物理学报 61 118401]

    [6]

    Wang S S, Gao J S, Liang F C, Wang Y S, Chen X 2011 Acta Phys. Sin. 60 050703 (in Chinese) [王珊珊, 高劲松, 梁凤超, 王岩松, 陈新 2011 物理学报 60 050703]

    [7]

    Gao J S, Wang S S, Feng X G, Xu N X, Zhao J L, Chen H 2010 Acta Phys. Sin. 59 7338 (in Chinese) [高劲松, 王珊珊, 冯晓国, 徐念喜, 赵晶丽, 陈红 2010 物理学报 59 7338]

    [8]

    Tang G M, Miao J G, Dong J M 2012 Acta Phys. Sin. 61 068402 (in Chinese) [唐光明, 苗俊刚, 董金明 2012 物理学报 61 068402]

    [9]

    Wang J B, Lu J 2011 Acta Phys. Sin. 60 057304 (in Chinese) [汪剑波, 卢俊 2011 物理学报 60 050703]

    [10]

    Xu L X, Feng X G, Wang Y S, Chen X, Gao J S 2011 Acta Phys. Sin. 60 114102 (in Chinese) [徐念喜, 冯晓国, 王岩松, 陈新, 高劲松 2011 物理学报 60 114102]

    [11]

    Yuehe G, Karu P E, Trevor S F 2012 IEEE Trans. Antennas Propagat. 60 743

    [12]

    Andrew R W, Trevor S B, Jay G Y 2008 IEEE Trans. Antennas Propagat. 56 3382

    [13]

    Abbas P, Hadi B, Javad N 2012 IEEE Trans. Antennas Propagat. 60 2101

    [14]

    Lina M, Bernard J 2010 IEEE Trans. Antennas Propagat. 9 326

    [15]

    Alireza F, Lotfollah S 2012 IEEE Trans. Antennas Propagat. 60 78

    [16]

    Zhao H, Qu S B, Lin B Q, Wang J F, Ma H, Xu Z, Peng W D, Bai P 2012 IEEE Trans. Antennas Propagat. 60 3040

    [17]

    Zhu B, Wang Z, Huang C, Feng Y, Zhao J, Jiang T 2010 Progress in Electromagnetics Research 10 231

    [18]

    Ma Y, Chen Q, Grant J, Saha S C, Khalid A, Cumming D R 2011 Opt. Lett. 36 945

    [19]

    Li H, Li H Y, Zhou B, Shen X P, Cheng Q, Cui T J 2011 J. Appl. Phys. 110 014909

    [20]

    Luo H, Wang T, Gong R Z, Nie Y, Wang X 2011 Chin. Phys. Lett. 28 034204

    [21]

    Lu L, Qu S B, Ma H, Yu F, Xia S, Xu Z, Bai P 2013 Acta Phys. Sin. 62 104102 (in Chinese) [鲁磊, 屈绍波, 马华, 余斐, 夏颂, 徐卓, 柏鹏 2013 物理学报 62 104102]

    [22]

    Cheng Y Z, Nie Y, Gong R Z, Wang X 2013 Acta Phys. Sin. 62 044103 (in Chinese) [程用志, 聂彦, 龚荣洲, 王鲜 2013 物理学报 62 044103]

    [23]

    Munk B A 2000 Frequency Selective Surfaces Theory and Design (New York: Wiley) p80–116

    [24]

    Lei C J, Yu S, Li H F, Niu X J, Liu Y H, Hou S Y, Zhang T Z 2013 Acta Phys. Sin. 62 044103 (in Chinese) [雷朝军, 喻胜, 李宏福, 牛新建, 刘迎辉, 候慎勇, 张天钟 2012 物理学报 61 180202]

    [25]

    Prior C J, Hall P S 1985 Electron Lett. 21 719

    [26]

    Feresidis A P, Vardaxoglou J C 2001 IEE Proc-Microw. Antennas Propag 148 345

    [27]

    Abbas P, Hadi B, Javad N 2012 IEEE Trans. Antennas Propagat. 60 2101

  • [1]

    Munk B A 2000 Frequency Selective Surfaces Theory and Design (New York: Wiley) p28

    [2]

    Rajesh N, Malathi K, Sanjay B, Ramprabhu S, Sandeepkumar P, Jayaram K P 2013 IEEE Antennas And Wireless Propagation Letters 12 718

    [3]

    Chen Y, Zhao D, Wang Y, Shu W 2012 Chin. Phys. B 21 058401

    [4]

    Gao J S, Feng X G, Sun L C, Jia H Y 2009 Acta Phys. Sin. 58 505 (in Chinese) [高劲松, 冯晓国, 孙连春, 贾宏燕 2009 物理学报 58 505]

    [5]

    Tang G M, Miao J G, Dong J M, Hu X Q 2012 Acta Phys. Sin. 61 118401 (in Chinese) [唐光明, 苗俊刚, 董金明, 胡晓晴 2012 物理学报 61 118401]

    [6]

    Wang S S, Gao J S, Liang F C, Wang Y S, Chen X 2011 Acta Phys. Sin. 60 050703 (in Chinese) [王珊珊, 高劲松, 梁凤超, 王岩松, 陈新 2011 物理学报 60 050703]

    [7]

    Gao J S, Wang S S, Feng X G, Xu N X, Zhao J L, Chen H 2010 Acta Phys. Sin. 59 7338 (in Chinese) [高劲松, 王珊珊, 冯晓国, 徐念喜, 赵晶丽, 陈红 2010 物理学报 59 7338]

    [8]

    Tang G M, Miao J G, Dong J M 2012 Acta Phys. Sin. 61 068402 (in Chinese) [唐光明, 苗俊刚, 董金明 2012 物理学报 61 068402]

    [9]

    Wang J B, Lu J 2011 Acta Phys. Sin. 60 057304 (in Chinese) [汪剑波, 卢俊 2011 物理学报 60 050703]

    [10]

    Xu L X, Feng X G, Wang Y S, Chen X, Gao J S 2011 Acta Phys. Sin. 60 114102 (in Chinese) [徐念喜, 冯晓国, 王岩松, 陈新, 高劲松 2011 物理学报 60 114102]

    [11]

    Yuehe G, Karu P E, Trevor S F 2012 IEEE Trans. Antennas Propagat. 60 743

    [12]

    Andrew R W, Trevor S B, Jay G Y 2008 IEEE Trans. Antennas Propagat. 56 3382

    [13]

    Abbas P, Hadi B, Javad N 2012 IEEE Trans. Antennas Propagat. 60 2101

    [14]

    Lina M, Bernard J 2010 IEEE Trans. Antennas Propagat. 9 326

    [15]

    Alireza F, Lotfollah S 2012 IEEE Trans. Antennas Propagat. 60 78

    [16]

    Zhao H, Qu S B, Lin B Q, Wang J F, Ma H, Xu Z, Peng W D, Bai P 2012 IEEE Trans. Antennas Propagat. 60 3040

    [17]

    Zhu B, Wang Z, Huang C, Feng Y, Zhao J, Jiang T 2010 Progress in Electromagnetics Research 10 231

    [18]

    Ma Y, Chen Q, Grant J, Saha S C, Khalid A, Cumming D R 2011 Opt. Lett. 36 945

    [19]

    Li H, Li H Y, Zhou B, Shen X P, Cheng Q, Cui T J 2011 J. Appl. Phys. 110 014909

    [20]

    Luo H, Wang T, Gong R Z, Nie Y, Wang X 2011 Chin. Phys. Lett. 28 034204

    [21]

    Lu L, Qu S B, Ma H, Yu F, Xia S, Xu Z, Bai P 2013 Acta Phys. Sin. 62 104102 (in Chinese) [鲁磊, 屈绍波, 马华, 余斐, 夏颂, 徐卓, 柏鹏 2013 物理学报 62 104102]

    [22]

    Cheng Y Z, Nie Y, Gong R Z, Wang X 2013 Acta Phys. Sin. 62 044103 (in Chinese) [程用志, 聂彦, 龚荣洲, 王鲜 2013 物理学报 62 044103]

    [23]

    Munk B A 2000 Frequency Selective Surfaces Theory and Design (New York: Wiley) p80–116

    [24]

    Lei C J, Yu S, Li H F, Niu X J, Liu Y H, Hou S Y, Zhang T Z 2013 Acta Phys. Sin. 62 044103 (in Chinese) [雷朝军, 喻胜, 李宏福, 牛新建, 刘迎辉, 候慎勇, 张天钟 2012 物理学报 61 180202]

    [25]

    Prior C J, Hall P S 1985 Electron Lett. 21 719

    [26]

    Feresidis A P, Vardaxoglou J C 2001 IEE Proc-Microw. Antennas Propag 148 345

    [27]

    Abbas P, Hadi B, Javad N 2012 IEEE Trans. Antennas Propagat. 60 2101

  • [1] 冯奎胜, 李娜, 李桐. 有源器件混合集成的超薄超宽带可调雷达吸波体. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211254
    [2] 周仕浩, 房欣宇, 李猛猛, 俞叶峰, 陈如山. S/X双频带吸波实时可调的吸波器. 物理学报, 2020, 69(20): 204101. doi: 10.7498/aps.69.20200606
    [3] 李唐景, 梁建刚, 李海鹏, 牛雪彬, 刘亚峤. 基于单层线-圆极化转换聚焦超表面的宽带高增益圆极化天线设计. 物理学报, 2017, 66(6): 064102. doi: 10.7498/aps.66.064102
    [4] 张晨, 曹祥玉, 高军, 李思佳, 郑月军. 一种基于共享孔径Fabry-Perot谐振腔结构的宽带高增益磁电偶极子微带天线. 物理学报, 2016, 65(13): 134205. doi: 10.7498/aps.65.134205
    [5] 侯海生, 王光明, 李海鹏, 蔡通, 郭文龙. 超薄宽带平面聚焦超表面及其在高增益天线中的应用. 物理学报, 2016, 65(2): 027701. doi: 10.7498/aps.65.027701
    [6] 李唐景, 梁建刚, 李海鹏. 基于单层反射超表面的宽带圆极化高增益天线设计. 物理学报, 2016, 65(10): 104101. doi: 10.7498/aps.65.104101
    [7] 闫昕, 梁兰菊, 张雅婷, 丁欣, 姚建铨. 基于编码超表面的太赫兹宽频段雷达散射截面缩减的研究. 物理学报, 2015, 64(15): 158101. doi: 10.7498/aps.64.158101
    [8] 丛丽丽, 付强, 曹祥玉, 高军, 宋涛, 李文强, 赵一, 郑月军. 一种高增益低雷达散射截面的新型圆极化微带天线设计. 物理学报, 2015, 64(22): 224219. doi: 10.7498/aps.64.224219
    [9] 李文强, 曹祥玉, 高军, 郑月军, 杨欢欢, 李思佳, 赵一. 共享孔径人工电磁媒质设计及其在高增益低雷达散射截面天线中的应用. 物理学报, 2015, 64(5): 054101. doi: 10.7498/aps.64.054101
    [10] 惠忆聪, 王春齐, 黄小忠. 基于电阻型频率选择表面的宽带雷达超材料吸波体设计. 物理学报, 2015, 64(21): 218102. doi: 10.7498/aps.64.218102
    [11] 李勇峰, 张介秋, 屈绍波, 王甲富, 陈红雅, 徐卓, 张安学. 宽频带雷达散射截面缩减相位梯度超表面的设计及实验验证. 物理学报, 2014, 63(8): 084103. doi: 10.7498/aps.63.084103
    [12] 赵一, 曹祥玉, 张迪, 姚旭, 李思佳, 杨欢欢, 李文强. 一种兼有高增益和宽带低散射特征的波导缝隙天线设计. 物理学报, 2014, 63(3): 034101. doi: 10.7498/aps.63.034101
    [13] 郑月军, 高军, 曹祥玉, 郑秋容, 李思佳, 李文强, 杨群. 一种兼具宽带增益改善和宽带、宽角度低雷达散射截面的微带天线. 物理学报, 2014, 63(22): 224102. doi: 10.7498/aps.63.224102
    [14] 赵一, 曹祥玉, 高军, 姚旭, 马嘉俊, 李思佳, 杨欢欢. 人工磁导体正交布阵的宽带低雷达截面反射屏. 物理学报, 2013, 62(15): 154204. doi: 10.7498/aps.62.154204
    [15] 鲁磊, 屈绍波, 马华, 夏颂, 徐卓, 王甲富, 余斐. 宽带雷达散射截面减缩人工磁导体复合结构. 物理学报, 2013, 62(3): 034206. doi: 10.7498/aps.62.034206
    [16] 李思佳, 曹祥玉, 高军, 刘涛, 杨欢欢, 李文强. 宽带超薄完美吸波体设计及在圆极化倾斜波束天线雷达散射截面缩减中的应用研究. 物理学报, 2013, 62(12): 124101. doi: 10.7498/aps.62.124101
    [17] 刁志辉, 黄文彬, 邓舒鹏, 刘永刚, 彭增辉, 姚丽双, 宣丽. 基于低散射和高增益全息液晶/聚合物光栅的分布反馈式激光器. 物理学报, 2013, 62(3): 034202. doi: 10.7498/aps.62.034202
    [18] 杨欢欢, 曹祥玉, 高军, 刘涛, 李思佳, 赵一, 袁子东, 张浩. 基于电磁谐振分离的宽带低雷达截面超材料吸波体. 物理学报, 2013, 62(21): 214101. doi: 10.7498/aps.62.214101
    [19] 李思佳, 曹祥玉, 高军, 郑秋容, 赵一, 杨群. 低雷达散射截面的超薄宽带完美吸波屏设计研究. 物理学报, 2013, 62(19): 194101. doi: 10.7498/aps.62.194101
    [20] 李小秋, 高劲松, 赵晶丽, 孙连春. 一种适用于雷达罩的频率选择表面新单元研究. 物理学报, 2008, 57(6): 3803-3806. doi: 10.7498/aps.57.3803
计量
  • 文章访问数:  3793
  • PDF下载量:  709
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-07-24
  • 修回日期:  2013-09-02
  • 刊出日期:  2014-01-05

一种性能稳定的新型频率选择表面及其微带天线应用

  • 1. 空军工程大学信息与导航学院, 西安 710077
    基金项目: 国家自然科学基金(批准号:61271100)、陕西省自然科学基金研究重点项目(批准号:2010JZ010)和陕西省自然科学基础研究计划项目(批准号:2012JM8003)资助的课题.

摘要: 设计了一种基于分形树结构的高性能频率选择表面(frequency selective surface,FSS),并将其作为微带天线的空间滤波器,同时改善天线的辐射与散射性能. 该FSS单元是由两层金属及其中间介质组成,上、下层金属采用金属柱连结,整体构成树枝状分形结构. 通过优化参数,得到了一种宽带、极化无关、宽入射角、小型化的超薄FSS,厚度只有约0.017λ. 将该FSS应用于微带天线后,天线的相对带宽拓展到40%,工作频段内的增益得到改善,9.6 GHz时,天线的增益提高了6.7 dB,同时,天线工作频带内的雷达散射截面(radar cross section,RCS)也得到了明显减缩,最大减缩为12.7 dB. 实验结果与仿真结果符合得较好,证实了该空间滤波器具有提高宽带天线增益、增强天线定向性、改善天线带宽与降低天线带内RCS的效果,可以应用于宽带天线带内辐射与散射性能的同时改善.

English Abstract

参考文献 (27)

目录

    /

    返回文章
    返回