搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超结硅锗碳异质结双极晶体管机理研究与特性分析优化

刘静 郭飞 高勇

引用本文:
Citation:

超结硅锗碳异质结双极晶体管机理研究与特性分析优化

刘静, 郭飞, 高勇

Mechanism and characteristic analysis and optimization of SiGeC heterojunction bipolar transistor with super junction

Liu Jing, Guo Fei, Gao Yong
PDF
导出引用
  • 提出一种超结硅锗碳异质结双极晶体管(SiGeC HBT)新结构. 详细分析了新结构中SiGeC 基区和超结结构的引入对器件性能的影响,并对其电流输运机制进行研究. 基于SiGeC/Si异质结技术,新结构器件的高频特性优良;同时超结结构的存在,在集电区内部水平方向和垂直方向都建立了电场,二维方向上的电场分布相互作用大大提高了新结构器件的耐压能力. 结果表明: 超结SiGeC HBT与普通结构SiGeC HBT相比,击穿电压提高了48.8%;更重要的是SiGeC HBT 器件中超结结构的引入,不会改变器件高电流增益、高频率特性的优点;新结构器件与相同结构参数的Si 双极晶体管相比,电流增益提高了10.7倍,截止频率和最高震荡频率也得到了大幅度改善,很好地实现了高电流增益、高频率特性和高击穿电压三者之间的折中. 对超结区域的柱区层数和宽度进行优化设计,随着柱区层数的增多,击穿电压显著增大,电流增益有所提高,截止频率和最高震荡频率减低,但幅度很小. 综合考虑认为超结区域采用pnpn四层结构是合理的.
    A novel SiGeC heterojunction bipolar transistor (HTB) with super junction is presented. The effects of SiGeC base and super junction on device performance are analyzed in detail, and current transport mechanism of novel device is studied. Based on SiGeC/Si heterojunction technology, the high frequency characteristic of the novel device can be excellent. The breakdown voltage of device is improved greatly, because of two-dimensional direction of the electric field distribution in the collector region. The results show that the breakdown voltage of SiGeC HBT with super junction is increased by 48.8%, compared with that without super junction. More importantly, the introduction of super junction changes neither the high current gain nor the high frequency characteristics of SiGeC HBT. Compared with the Si bipolar transistor (BJT) with the same parameters, the novel device has a current gain that increases 10.7 times, and its cutoff frequency and maximum oscillation frequency are also improved greatly. A good trade-off is achieved among high current gain, high frequency and high breakdown voltage, in the novel SiGeC HBT with super junction. The layers and width of column region are designed to be optimal. With the increase in the number of column region layers, the breakdown voltage of the novel device is increased significantly, the current gain is improved somewhat, and the cutoff frequency and maximum oscillation frequency are reduced slightly. Taken together, the pnpn four-layer structure of super junction region is reasonable.
    • 基金项目: 国家自然科学基金(批准号:61204094)、高等学校博士学科点专项科研基金(批准号:20106118120003)和陕西省教育厅科学研究计划(批准号:11JK0924)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61204094), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20106118120003), and the Specialized Scientific Research of the Education Bureau of Shaanxi, China (Grant No. 11JK0924).
    [1]

    Schroter M, Krause J, Rinaldi N 2011 IEEE Trans. Electr. Dev. 58 3697

    [2]

    Zhang J, Li Z Q, Chen L Q, Chen P F, Zhang H Y 2008 Chin. J. Semicond. 29 655

    [3]

    Pottrain A, Lacave T, Ducatteau D, Gloria D, Chevalier P, Gaquiére C 2012 IEEE Electron Dev. Lett. 33 182

    [4]

    Al-Sadi M, Fregonese S, Maneux C 2010 IEEE Bipolar/BiCMOS Circuits and Technology Meeting Austin, TX, United States, October 4-6, 2010 p216

    [5]

    Heinemann B, Barth R, Bolze D 2010 IEEE Interna- tional Electron Devices Meeting San Francisco, CA, United States, December 6-8, 2010 p30.5.1.

    [6]

    Zhang J X, Guo H X, Guo Q, Wen L, Cui J W, Xi S B, Wang X, Deng W 2013 Acta Phys. Sin. 62 048501 (in Chinese) [张晋新, 郭红霞, 郭旗, 文林, 崔江维, 席善斌, 王信, 邓伟 2013 物理学报 62 048501]

    [7]

    Schroter M, Wedel G, Heinemann B 2011 IEEE Trans. Electr. Dev. 58 3687

    [8]

    Chevalier P, Barbalat B, Rubaldo L 2005 Proceedings of the Bipolar/BiCMOS Circuits and Technology Meeting Santa Barbara, CA, United States, October 9-11, 2005 p120

    [9]

    Dacquay E, Tomkins A, Yau K H K, Laskin E, Chevalier P, Chantre A, Sautreuil B, Voinigescu S P 2012 IEEE Trans. Microw. Theory 60 813

    [10]

    Chevalier P, Raya C, Vandelle B 2006 Bipolar/BiCMOS Circuits and Technology Meeting Maastricht, Netherlands, September 10-13, 2006 p1

    [11]

    Mertens H, Magnee P H C, Donkers J J T M 2011 IEEE Bipolar/BiCMOS Circuits and Technology Meeting Atlanta, GA, United States, October 9-11, 2011 p158

    [12]

    Yuan J H, Cressler J D 2011 IEEE Trans. Electr. Dev. 58 1655

    [13]

    Al Hadi R, Grzyb J, Heinemann B, Pfeiffer U R 2013 IEEE J. Solid. St. Circ. 99 1

    [14]

    Xu X B, Zhang H M, Hu H Y, Xu L J, Ma J L 2011 Acta Phys. Sin. 60 078502 (in Chinese) [徐小波, 张鹤鸣, 胡辉勇, 许立军, 马建立 2011 物理学报 60 078502]

    [15]

    Grujic D, Savić M, Bingöl C, Saranovac L 2012 IEEE Microw. Wirel. Co. 22 194

    [16]

    Peng C, Dahlstrom M, Liu Q Z 2011 IEEE Bipolar/BiCMOS Circuits and Technology Meeting Atlanta, GA, United States, October 9-11, 2011 p154

    [17]

    Luther-King N, Sweet M, Narayanan E M S 2012 IEEE Trans. Power Electr. 27 3072

    [18]

    Nakajima A, Sumida Y, Dhyani M H, Kawai H, Narayanan E M S 2011 IEEE Electron Dev. Lett. 32 542

    [19]

    Yang Y T, Geng Z H, Duan B X, Jia H J, Yu C, Ren L L 2010 Acta Phys. Sin. 59 566 (in Chinese) [杨银堂, 耿振海, 段宝兴, 贾护军, 余涔, 任丽丽 2010 物理学报 59 566]

    [20]

    Wu W, Zhang B, Fang J, Luo X R, Li Z J 2013 Chin. Phys. B 22 068501

    [21]

    Luther-King N, Sweet M, Narayanan E M S 2012 IEEE Trans. Power Electr. 27 3072

    [22]

    Gao Y, Liu J, Yang Y 2008 Chin. Phys. B 17 4635

    [23]

    Osten H J 1998 J. Appl. Phys. 84 2716

  • [1]

    Schroter M, Krause J, Rinaldi N 2011 IEEE Trans. Electr. Dev. 58 3697

    [2]

    Zhang J, Li Z Q, Chen L Q, Chen P F, Zhang H Y 2008 Chin. J. Semicond. 29 655

    [3]

    Pottrain A, Lacave T, Ducatteau D, Gloria D, Chevalier P, Gaquiére C 2012 IEEE Electron Dev. Lett. 33 182

    [4]

    Al-Sadi M, Fregonese S, Maneux C 2010 IEEE Bipolar/BiCMOS Circuits and Technology Meeting Austin, TX, United States, October 4-6, 2010 p216

    [5]

    Heinemann B, Barth R, Bolze D 2010 IEEE Interna- tional Electron Devices Meeting San Francisco, CA, United States, December 6-8, 2010 p30.5.1.

    [6]

    Zhang J X, Guo H X, Guo Q, Wen L, Cui J W, Xi S B, Wang X, Deng W 2013 Acta Phys. Sin. 62 048501 (in Chinese) [张晋新, 郭红霞, 郭旗, 文林, 崔江维, 席善斌, 王信, 邓伟 2013 物理学报 62 048501]

    [7]

    Schroter M, Wedel G, Heinemann B 2011 IEEE Trans. Electr. Dev. 58 3687

    [8]

    Chevalier P, Barbalat B, Rubaldo L 2005 Proceedings of the Bipolar/BiCMOS Circuits and Technology Meeting Santa Barbara, CA, United States, October 9-11, 2005 p120

    [9]

    Dacquay E, Tomkins A, Yau K H K, Laskin E, Chevalier P, Chantre A, Sautreuil B, Voinigescu S P 2012 IEEE Trans. Microw. Theory 60 813

    [10]

    Chevalier P, Raya C, Vandelle B 2006 Bipolar/BiCMOS Circuits and Technology Meeting Maastricht, Netherlands, September 10-13, 2006 p1

    [11]

    Mertens H, Magnee P H C, Donkers J J T M 2011 IEEE Bipolar/BiCMOS Circuits and Technology Meeting Atlanta, GA, United States, October 9-11, 2011 p158

    [12]

    Yuan J H, Cressler J D 2011 IEEE Trans. Electr. Dev. 58 1655

    [13]

    Al Hadi R, Grzyb J, Heinemann B, Pfeiffer U R 2013 IEEE J. Solid. St. Circ. 99 1

    [14]

    Xu X B, Zhang H M, Hu H Y, Xu L J, Ma J L 2011 Acta Phys. Sin. 60 078502 (in Chinese) [徐小波, 张鹤鸣, 胡辉勇, 许立军, 马建立 2011 物理学报 60 078502]

    [15]

    Grujic D, Savić M, Bingöl C, Saranovac L 2012 IEEE Microw. Wirel. Co. 22 194

    [16]

    Peng C, Dahlstrom M, Liu Q Z 2011 IEEE Bipolar/BiCMOS Circuits and Technology Meeting Atlanta, GA, United States, October 9-11, 2011 p154

    [17]

    Luther-King N, Sweet M, Narayanan E M S 2012 IEEE Trans. Power Electr. 27 3072

    [18]

    Nakajima A, Sumida Y, Dhyani M H, Kawai H, Narayanan E M S 2011 IEEE Electron Dev. Lett. 32 542

    [19]

    Yang Y T, Geng Z H, Duan B X, Jia H J, Yu C, Ren L L 2010 Acta Phys. Sin. 59 566 (in Chinese) [杨银堂, 耿振海, 段宝兴, 贾护军, 余涔, 任丽丽 2010 物理学报 59 566]

    [20]

    Wu W, Zhang B, Fang J, Luo X R, Li Z J 2013 Chin. Phys. B 22 068501

    [21]

    Luther-King N, Sweet M, Narayanan E M S 2012 IEEE Trans. Power Electr. 27 3072

    [22]

    Gao Y, Liu J, Yang Y 2008 Chin. Phys. B 17 4635

    [23]

    Osten H J 1998 J. Appl. Phys. 84 2716

  • [1] 张晋新, 王信, 郭红霞, 冯娟, 吕玲, 李培, 闫允一, 吴宪祥, 王辉. 三维数值仿真研究锗硅异质结双极晶体管总剂量效应. 物理学报, 2022, 71(5): 058502. doi: 10.7498/aps.71.20211795
    [2] 郭春生, 丁嫣, 姜舶洋, 廖之恒, 苏雅, 冯士维. 高效在线测量加速实验中双极晶体管结温方法的研究. 物理学报, 2017, 66(22): 224703. doi: 10.7498/aps.66.224703
    [3] 张晓宇, 张丽平, 马忠权, 刘正新. 硅锗量子阱结构在硅异质结太阳电池中应用的数值模拟. 物理学报, 2016, 65(13): 138801. doi: 10.7498/aps.65.138801
    [4] 李培, 郭红霞, 郭旗, 文林, 崔江维, 王信, 张晋新. 锗硅异质结双极晶体管单粒子效应加固设计与仿真. 物理学报, 2015, 64(11): 118502. doi: 10.7498/aps.64.118502
    [5] 张晋新, 贺朝会, 郭红霞, 唐杜, 熊涔, 李培, 王信. 不同偏置影响锗硅异质结双极晶体管单粒子效应的三维数值仿真研究. 物理学报, 2014, 63(24): 248503. doi: 10.7498/aps.63.248503
    [6] 段宝兴, 曹震, 袁嵩, 袁小宁, 杨银堂. 新型缓冲层分区电场调制横向双扩散超结功率器件. 物理学报, 2014, 63(24): 247301. doi: 10.7498/aps.63.247301
    [7] 周守利, 李伽, 任宏亮, 温浩, 彭银生. 异质结界面电荷对突变InP/InGaAs异质结双极晶体管热场发射影响研究. 物理学报, 2013, 62(17): 178501. doi: 10.7498/aps.62.178501
    [8] 鲁东, 金冬月, 张万荣, 张瑜洁, 付强, 胡瑞心, 高栋, 张卿远, 霍文娟, 周孟龙, 邵翔鹏. 新型宽温区高热稳定性微波功率SiGe 异质结双极晶体管. 物理学报, 2013, 62(10): 104401. doi: 10.7498/aps.62.104401
    [9] 张晋新, 郭红霞, 郭旗, 文林, 崔江维, 席善斌, 王信, 邓伟. 重离子导致的锗硅异质结双极晶体管单粒子效应电荷收集三维数值模拟. 物理学报, 2013, 62(4): 048501. doi: 10.7498/aps.62.048501
    [10] 孙亚宾, 付军, 许军, 王玉东, 周卫, 张伟, 崔杰, 李高庆, 刘志弘. 不同剂量率下锗硅异质结双极晶体管电离损伤效应研究. 物理学报, 2013, 62(19): 196104. doi: 10.7498/aps.62.196104
    [11] 余晨辉, 罗向东, 周文政, 罗庆洲, 刘培生. 新型双异质结高电子迁移率晶体管的电流崩塌效应研究. 物理学报, 2012, 61(20): 207301. doi: 10.7498/aps.61.207301
    [12] 戴显英, 金国强, 董洁琼, 王船宝, 赵娴, 楚亚萍, 奚鹏程, 邓文洪, 张鹤鸣, 郝跃. 锗硅/硅异质结材料的化学气相淀积生长动力学模型. 物理学报, 2011, 60(6): 065101. doi: 10.7498/aps.60.065101
    [13] 肖盈, 张万荣, 金冬月, 陈亮, 王任卿, 谢红云. 能带工程对射频功率SiGe异质结双极晶体管热性能的改善. 物理学报, 2011, 60(4): 044402. doi: 10.7498/aps.60.044402
    [14] 胡辉勇, 舒钰, 张鹤鸣, 宋建军, 宣荣喜, 秦珊珊, 屈江涛. 含有本征SiGe层的SiGe异质结双极晶体管集电结耗尽层宽度模型. 物理学报, 2011, 60(1): 017303. doi: 10.7498/aps.60.017303
    [15] 高勇, 马丽, 张如亮, 王冬芳. n,p柱宽度对超结SiGe功率二极管电学特性的影响. 物理学报, 2011, 60(4): 047303. doi: 10.7498/aps.60.047303
    [16] 陈亮, 张万荣, 金冬月, 谢红云, 肖盈, 王任卿, 丁春宝. 采用发射极非均匀指间距技术改善功率异质结双极晶体管热稳定性的研究. 物理学报, 2011, 60(7): 078501. doi: 10.7498/aps.60.078501
    [17] 葛霁, 金智, 苏永波, 程伟, 刘新宇, 吴德馨. 一种InP双异质结双极晶体管小信号物理模型及其提取方法. 物理学报, 2009, 58(12): 8584-8590. doi: 10.7498/aps.58.8584
    [18] 刘 红, 陈将伟. 纳米碳管异质结的结构及其电学性质. 物理学报, 2003, 52(3): 664-667. doi: 10.7498/aps.52.664
    [19] 刘海文, 孙晓玮, 程知群, 车延峰, 李征帆. GaInP/GaAs异质结双极晶体管小信号模型参数提取的新方法. 物理学报, 2003, 52(9): 2298-2303. doi: 10.7498/aps.52.2298
    [20] 张兴宏, 胡雨生, 吴 杰, 程知群, 夏冠群, 徐元森, 陈张海, 桂永胜, 褚君浩. 深能级对AlGaInP/GaAs异质结双极晶体管性能的影响. 物理学报, 1999, 48(3): 556-560. doi: 10.7498/aps.48.556
计量
  • 文章访问数:  2968
  • PDF下载量:  400
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-09-24
  • 修回日期:  2013-10-31
  • 刊出日期:  2014-02-05

超结硅锗碳异质结双极晶体管机理研究与特性分析优化

  • 1. 西安理工大学电子工程系, 西安 710048
    基金项目: 国家自然科学基金(批准号:61204094)、高等学校博士学科点专项科研基金(批准号:20106118120003)和陕西省教育厅科学研究计划(批准号:11JK0924)资助的课题.

摘要: 提出一种超结硅锗碳异质结双极晶体管(SiGeC HBT)新结构. 详细分析了新结构中SiGeC 基区和超结结构的引入对器件性能的影响,并对其电流输运机制进行研究. 基于SiGeC/Si异质结技术,新结构器件的高频特性优良;同时超结结构的存在,在集电区内部水平方向和垂直方向都建立了电场,二维方向上的电场分布相互作用大大提高了新结构器件的耐压能力. 结果表明: 超结SiGeC HBT与普通结构SiGeC HBT相比,击穿电压提高了48.8%;更重要的是SiGeC HBT 器件中超结结构的引入,不会改变器件高电流增益、高频率特性的优点;新结构器件与相同结构参数的Si 双极晶体管相比,电流增益提高了10.7倍,截止频率和最高震荡频率也得到了大幅度改善,很好地实现了高电流增益、高频率特性和高击穿电压三者之间的折中. 对超结区域的柱区层数和宽度进行优化设计,随着柱区层数的增多,击穿电压显著增大,电流增益有所提高,截止频率和最高震荡频率减低,但幅度很小. 综合考虑认为超结区域采用pnpn四层结构是合理的.

English Abstract

参考文献 (23)

目录

    /

    返回文章
    返回