搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

飞秒脉冲激光辐照对硅发光性能的影响

朱敏 李晓红 李国强 常利阳 谢长鑫 邱荣 李家文 黄文浩

引用本文:
Citation:

飞秒脉冲激光辐照对硅发光性能的影响

朱敏, 李晓红, 李国强, 常利阳, 谢长鑫, 邱荣, 李家文, 黄文浩

Photoluminescence of monocrystalline silicon irradiated by femtosecond pulsed laser

Zhu Min, Li Xiao-Hong, Li Guo-Qiang, Chang Li-Yang, Xie Chang-Xin, Qiu Rong, Li Jia-Wen, Huang Wen-Hao
PDF
导出引用
  • 利用飞秒脉冲激光对单晶硅进行辐照,研究了在不同环境(纯水和空气)和能量密度条件下激光刻蚀过后硅片的光致荧光特性. 对于辐照后的硅片,利用了场发射扫描电子显微镜(FESEM)、能谱仪(EDS)、傅里叶红外光谱仪(FT-IR)、 光致荧光光谱仪(PL)进行表征. 结果显示:在空气中样品表面形成了条纹状微结构,纯水中硅片表面生成了尺寸更小的珊瑚状微结构;激光刻蚀后在硅片表面的生成物主要是SiOx(x-1)和Si–O–Si键(1105 cm-1)的振动;在空气和纯水中激发出的荧光均为蓝光(420–470 nm),在各自最佳激发波长下,纯水中荧光强度比空气中强2到3倍,但是在可见光范围内荧光峰的位置和形状都基本没有发生变化. 研究表明:氧元素在光致发光增强上起着重要作用,光致发光最主要是由形成的氧缺陷SiOx(xx的多少决定了发光的强弱.
    We report the photoluminescence of monocrystalline silicon irradiated by femtosecond pulsed laser in different environments (deionized water and air) and energy density conditions. The field emission scanning electron microscope (FESEM) measurement results show the formation of completely different morphologies on silicon surface in different environments. A stripe-like microstructure on the silicon surface in air is formed in contrast to the smaller and coral-like microstructure generated in the deionized water. By using the energy dispersive spectroscopy (EDS) we find that silicon and oxygen is the main elemental composition on femtosecond laser-induced silicon surface, and the content of oxygen on the sample surface formed in the deionized water is nearly four times larger than that in air. The Si-Si bond (610 cm-1) and Si-O-Si bond vibrations (1105 cm-1) are detected mainly in the Fourier transform infrared transmission spectrum (FT-IR). The photoluminescence (PL) spectroscopy measurement results show that visible blue luminescence is observed both from the silicon ablated in the deionized water and in air, while the shape and position of the emitted luminescence peak are substantially the same. However, the luminescence intensity of silicon etched in the deionized water is close to 3 times stronger than that in air when the photoluminescence is excited at respective most suitable excitation wavelength. A more interesting phenomenon is that the position and shape of the photoluminescence peak in the visible range are basically not changed. The studies confirm that oxygen plays an important role in photoluminescence enhancement. Photoluminescence may be mainly generated by the formation of oxygen defects SiOx and the content of low oxide SiOx (x<2) determines the luminous intensity level.
    • 基金项目: 国家自然科学基金(批准号:11204250)、四川省教育厅重点项目(批准号:12ZA186)和极端条件物质特性联合实验室开放基金(批准号:12zxjk02)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11204250), the Sichuan Provincial Education Department Key Project, China (Grant No. 12ZA186), and the material properties under extreme conditions Joint Laboratory Open Fund (Grant No. 12zxjk02).
    [1]

    Li C B, Jia T Q, Sun H Y, Li X X, Xu S Z, Feng D H, Wang X F, Ge X C, Xu Z Z 2006 Acta Phys. Sin. 55 217 (in Chinese) [李成斌, 贾天卿, 孙海轶, 李晓溪, 徐世珍, 冯东海, 王晓峰, 葛晓春, 徐至展 2006 物理学报 55 217]

    [2]

    Yang Y, Wang C, Yang R D, Li L, Xiong F, Bao J M 2009 Chin. Phys. B 18 4906

    [3]

    Yi Cui, Charles M. Lieber 2001 Science 291 851

    [4]

    Erogbogbo F, Yong K T, Roy I, Xu G, Prasad P N, Swihart M T 2008 ACS Nano 2 873

    [5]

    Kim U, Kim I, Park Y, Lee K Y, Yim S Y, Park J G, Ahn H G, Park S H, Choi H J 2011 ACS Nano 5 2176

    [6]

    ShinjiTakeoka, Kimiaki Toshikiyo, Minoru Fujii, Shinji Hayashi, Keiichi Yamamoto 2000 Phys. Rev. B 61 15988

    [7]

    Tyshcenko I E, Rbeohle L, Yankov R A, Skourpa W 1998 Appl. Phys. Lett. 73 1418

    [8]

    Chen X Y, Lu Y F, Wu Y H, Cho B J, Liu M H, Dai D Y, Song W D 2003 Appl. Phys. Lett. 93 6311

    [9]

    Deng Y P, Jia T Q, Leng Y X, Lu H H, Li R X, Xu Z Z 2004 Acta Phys. Sin. 53 2216 (in Chinese) [邓蕴沛, 贾天卿, 冷雨欣, 陆海鹤, 李儒新, 徐至展 2004 物理学报 53 2216]

    [10]

    Yu B H, Dai N L, Wang Y, Li Y H, Ji L L, Zheng Q G, Lu P X 2007 Acta Phys. Sin. 56 5821 (in Chinese) [余本海, 戴能利, 王英, 李玉华, 季玲玲, 郑启光, 陆培祥2007 物理学报 56 5821]

    [11]

    Huang W Q, Xu L, Wang H X, Jin F, Wu K Y, Liu S R, Qin C J, Qin S J 2008 Chin. Phys. 17 1817

    [12]

    Karabutov A V, Shafeev G A, Simakin A V 2003 Diamond and Related Materials 12 1705

    [13]

    Her T H, Finlay R J, Wu C, Mazur E 1998 Appl. Phys. Lett. 73 1673

    [14]

    Siekierzycka J R, Vasic M R, Zuihof H, Brouwer A 2011 J. Phys. Chem. C 115 20888

    [15]

    Fan J Y, Chu P K 2010 Small 6 2080

    [16]

    Takagi H, Ogawa H, Yamazaki Y, Ishizaki A, Nakagiri T, 1990 Appl. Phys. Lett. 56 2379

    [17]

    Weng Y M, Zong X F 1996 Chinese Phys. Lett. 13 35

    [18]

    Wu C, Crouch C H, Zhao L, Mazur E 2002 Appl. Phys. Lett. 11 1999

    [19]

    Yang S K, Li W Z, Cao B Q, Zeng H B, Cai W P 2011 Phys. Chem. C 115 21056

    [20]

    Qin G G, Li Y J 2003 Phys. Rev. B 68 085309

    [21]

    Weng Y M, Fan Z N, Zong X F 1993 Chinese Phys. Lett. 10 18

    [22]

    Liu P, Liang Y, Li H B, Xiao J, He T 2013 AIP Advances 3 022127

    [23]

    Li G Q, Li J W, Liang Y G, Li X H, Hua Y L, Chua J R, Huang W H 2013 Applied Surface Science 276 203

    [24]

    Shaheen M E, Gagnon J E, Fryer B J 2013 J. Appl. Phys. 113 213106

    [25]

    Shimizu Iwayama T, Nakao S, Saitoh K 1994 Appl. Phys. Lett. 65 1814

    [26]

    Ghislotti G, Nielsen B, Asoda Kumar P, Lyn K G, Gambhir A, Di Auro L F, Bottani C E 1996 J. Appl. Phys. 79 8660

    [27]

    Kenyon A J, Trwoga P F, Pitt C W, Rehm G 1996 J. Appl. Phys. 79 9291

    [28]

    Iyengar V V, Nayak B K, Karren L, Meyer H M, Biegalski M D, Li J V, Gupta M C 2011 Solar Energy Materials & Solar Cells 95 2745

    [29]

    Wen C, Yang H D, Li X H, Cui Y X, He X Q, Duan X F, Li Z H 2012 Appl. Phys. A 109 635

    [30]

    Daminelli G, Krger J, Kautek W 2004 Thin Solid Films 467 334

  • [1]

    Li C B, Jia T Q, Sun H Y, Li X X, Xu S Z, Feng D H, Wang X F, Ge X C, Xu Z Z 2006 Acta Phys. Sin. 55 217 (in Chinese) [李成斌, 贾天卿, 孙海轶, 李晓溪, 徐世珍, 冯东海, 王晓峰, 葛晓春, 徐至展 2006 物理学报 55 217]

    [2]

    Yang Y, Wang C, Yang R D, Li L, Xiong F, Bao J M 2009 Chin. Phys. B 18 4906

    [3]

    Yi Cui, Charles M. Lieber 2001 Science 291 851

    [4]

    Erogbogbo F, Yong K T, Roy I, Xu G, Prasad P N, Swihart M T 2008 ACS Nano 2 873

    [5]

    Kim U, Kim I, Park Y, Lee K Y, Yim S Y, Park J G, Ahn H G, Park S H, Choi H J 2011 ACS Nano 5 2176

    [6]

    ShinjiTakeoka, Kimiaki Toshikiyo, Minoru Fujii, Shinji Hayashi, Keiichi Yamamoto 2000 Phys. Rev. B 61 15988

    [7]

    Tyshcenko I E, Rbeohle L, Yankov R A, Skourpa W 1998 Appl. Phys. Lett. 73 1418

    [8]

    Chen X Y, Lu Y F, Wu Y H, Cho B J, Liu M H, Dai D Y, Song W D 2003 Appl. Phys. Lett. 93 6311

    [9]

    Deng Y P, Jia T Q, Leng Y X, Lu H H, Li R X, Xu Z Z 2004 Acta Phys. Sin. 53 2216 (in Chinese) [邓蕴沛, 贾天卿, 冷雨欣, 陆海鹤, 李儒新, 徐至展 2004 物理学报 53 2216]

    [10]

    Yu B H, Dai N L, Wang Y, Li Y H, Ji L L, Zheng Q G, Lu P X 2007 Acta Phys. Sin. 56 5821 (in Chinese) [余本海, 戴能利, 王英, 李玉华, 季玲玲, 郑启光, 陆培祥2007 物理学报 56 5821]

    [11]

    Huang W Q, Xu L, Wang H X, Jin F, Wu K Y, Liu S R, Qin C J, Qin S J 2008 Chin. Phys. 17 1817

    [12]

    Karabutov A V, Shafeev G A, Simakin A V 2003 Diamond and Related Materials 12 1705

    [13]

    Her T H, Finlay R J, Wu C, Mazur E 1998 Appl. Phys. Lett. 73 1673

    [14]

    Siekierzycka J R, Vasic M R, Zuihof H, Brouwer A 2011 J. Phys. Chem. C 115 20888

    [15]

    Fan J Y, Chu P K 2010 Small 6 2080

    [16]

    Takagi H, Ogawa H, Yamazaki Y, Ishizaki A, Nakagiri T, 1990 Appl. Phys. Lett. 56 2379

    [17]

    Weng Y M, Zong X F 1996 Chinese Phys. Lett. 13 35

    [18]

    Wu C, Crouch C H, Zhao L, Mazur E 2002 Appl. Phys. Lett. 11 1999

    [19]

    Yang S K, Li W Z, Cao B Q, Zeng H B, Cai W P 2011 Phys. Chem. C 115 21056

    [20]

    Qin G G, Li Y J 2003 Phys. Rev. B 68 085309

    [21]

    Weng Y M, Fan Z N, Zong X F 1993 Chinese Phys. Lett. 10 18

    [22]

    Liu P, Liang Y, Li H B, Xiao J, He T 2013 AIP Advances 3 022127

    [23]

    Li G Q, Li J W, Liang Y G, Li X H, Hua Y L, Chua J R, Huang W H 2013 Applied Surface Science 276 203

    [24]

    Shaheen M E, Gagnon J E, Fryer B J 2013 J. Appl. Phys. 113 213106

    [25]

    Shimizu Iwayama T, Nakao S, Saitoh K 1994 Appl. Phys. Lett. 65 1814

    [26]

    Ghislotti G, Nielsen B, Asoda Kumar P, Lyn K G, Gambhir A, Di Auro L F, Bottani C E 1996 J. Appl. Phys. 79 8660

    [27]

    Kenyon A J, Trwoga P F, Pitt C W, Rehm G 1996 J. Appl. Phys. 79 9291

    [28]

    Iyengar V V, Nayak B K, Karren L, Meyer H M, Biegalski M D, Li J V, Gupta M C 2011 Solar Energy Materials & Solar Cells 95 2745

    [29]

    Wen C, Yang H D, Li X H, Cui Y X, He X Q, Duan X F, Li Z H 2012 Appl. Phys. A 109 635

    [30]

    Daminelli G, Krger J, Kautek W 2004 Thin Solid Films 467 334

  • [1] 李香草, 刘宝安, 李猛, 闫春燕, 任杰, 刘畅, 巨新. 用光致发光研究不同通量辐照磷酸二氢钾晶体的缺陷. 物理学报, 2020, 69(17): 174208. doi: 10.7498/aps.69.20200482
    [2] 徐嶺茂, 高超, 董鹏, 赵建江, 马向阳, 杨德仁. 单晶硅片中的位错在快速热处理过程中的滑移. 物理学报, 2013, 62(16): 168101. doi: 10.7498/aps.62.168101
    [3] 司丽娜, 郭丹, 雒建斌. 氧化硅团簇切削单晶硅粗糙峰的分子动力学模拟研究. 物理学报, 2012, 61(16): 168103. doi: 10.7498/aps.61.168103
    [4] 田嘉彤, 冯仕猛, 王坤霞, 徐华天, 杨树泉, 刘峰, 黄建华, 裴俊. 新型添加剂对单晶硅表面金字塔形貌的影响. 物理学报, 2012, 61(6): 066803. doi: 10.7498/aps.61.066803
    [5] 包凌东, 韩敬华, 段涛, 孙年春, 高翔, 冯国英, 杨李茗, 牛瑞华, 刘全喜. 纳秒紫外重复脉冲激光烧蚀单晶硅的热力学过程研究 . 物理学报, 2012, 61(19): 197901. doi: 10.7498/aps.61.197901
    [6] 方合, 王顺利, 李立群, 李培刚, 刘爱萍, 唐为华. 液相激光烧蚀合成ZnO及Zn/ZnO纳米颗粒及其光致发光性能. 物理学报, 2011, 60(9): 096102. doi: 10.7498/aps.60.096102
    [7] 马维刚, 王海东, 张兴, 王玮. 飞秒脉冲激光加热金属薄膜的理论和实验研究. 物理学报, 2011, 60(6): 064401. doi: 10.7498/aps.60.064401
    [8] 杨义发, 李玉华, 龙华, 陆培祥, 杨光, 郑启光. 氧压对飞秒激光沉积ZnO/Si(100)薄膜光学性能的影响. 物理学报, 2009, 58(4): 2785-2791. doi: 10.7498/aps.58.2785
    [9] 郑立仁, 黄柏标, 尉吉勇. 不同气氛下SiOx纳米线的制备及形貌、红外、光致发光研究. 物理学报, 2009, 58(4): 2306-2312. doi: 10.7498/aps.58.2306
    [10] 于 威, 李亚超, 丁文革, 张江勇, 杨彦斌, 傅广生. 氮化硅薄膜中纳米非晶硅颗粒的键合结构及光致发光. 物理学报, 2008, 57(6): 3661-3665. doi: 10.7498/aps.57.3661
    [11] 缪竞威, 王培禄, 朱洲森, 袁学东, 王 虎, 杨朝文, 师勉恭, 缪 蕾, 孙威立, 张 静, 廖雪花. 氮团簇离子注入单晶硅的光致发光谱研究. 物理学报, 2008, 57(4): 2174-2178. doi: 10.7498/aps.57.2174
    [12] 姚志涛, 孙新瑞, 许海军, 姜卫粉, 肖顺华, 李新建. 氧化锌/硅纳米孔柱阵列的结构和光致发光特性研究. 物理学报, 2007, 56(10): 6098-6103. doi: 10.7498/aps.56.6098
    [13] 贾亚青, 闫培光, 吕可诚, 张铁群, 朱晓农. 高非线性光子晶体光纤中飞秒脉冲的传输特性和超连续谱产生机制的实验研究及模拟分析. 物理学报, 2006, 55(4): 1809-1814. doi: 10.7498/aps.55.1809
    [14] 王英龙, 卢丽芳, 闫常瑜, 褚立志, 周 阳, 傅广生, 彭英才. 具有窄光致发光谱的纳米Si晶薄膜的激光烧蚀制备. 物理学报, 2005, 54(12): 5738-5742. doi: 10.7498/aps.54.5738
    [15] 纪爱玲, 马利波, 刘 澂, 王永谦. 纳米Si-SiOx和Si-SiNx复合薄膜的低温制备及其发光特性. 物理学报, 2004, 53(11): 3818-3822. doi: 10.7498/aps.53.3818
    [16] 徐大印, 刘彦平, 何志巍, 方泽波, 刘雪芹, 王印月. 多孔硅衬底上溅射沉积SiC:Tb薄膜的光致发光行为. 物理学报, 2004, 53(8): 2694-2698. doi: 10.7498/aps.53.2694
    [17] 黄凯, 王思慧, 施毅, 秦国毅, 张荣, 郑有炓. 内电场对纳米硅光致发光谱的影响. 物理学报, 2004, 53(4): 1236-1242. doi: 10.7498/aps.53.1236
    [18] 彭爱华, 谢二庆, 姜 宁, 张志敏, 李 鹏, 贺德衍. 稀土(Tb,Gd)掺杂多孔硅的光致发光性能研究. 物理学报, 2003, 52(7): 1792-1796. doi: 10.7498/aps.52.1792
    [19] 马书懿, 秦国刚, 尤力平, 王印月. 含纳米硅和纳米锗的氧化硅薄膜光致发光的比较研究. 物理学报, 2001, 50(8): 1580-1584. doi: 10.7498/aps.50.1580
    [20] 梁二军, 晁明举. 激光诱导多孔硅晶格畸变的Raman光谱和光致发光谱研究. 物理学报, 2001, 50(11): 2241-2246. doi: 10.7498/aps.50.2241
计量
  • 文章访问数:  3438
  • PDF下载量:  461
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-10-10
  • 修回日期:  2013-11-12
  • 刊出日期:  2014-03-05

飞秒脉冲激光辐照对硅发光性能的影响

  • 1. 西南科技大学理学院, 中国工程物理研究院激光聚变研究中心极端条件物质特性联合实验室, 绵阳 621010;
  • 2. 中国科学技术大学精密机械与精密仪器系, 微纳米工程实验室, 合肥 230026
    基金项目: 国家自然科学基金(批准号:11204250)、四川省教育厅重点项目(批准号:12ZA186)和极端条件物质特性联合实验室开放基金(批准号:12zxjk02)资助的课题.

摘要: 利用飞秒脉冲激光对单晶硅进行辐照,研究了在不同环境(纯水和空气)和能量密度条件下激光刻蚀过后硅片的光致荧光特性. 对于辐照后的硅片,利用了场发射扫描电子显微镜(FESEM)、能谱仪(EDS)、傅里叶红外光谱仪(FT-IR)、 光致荧光光谱仪(PL)进行表征. 结果显示:在空气中样品表面形成了条纹状微结构,纯水中硅片表面生成了尺寸更小的珊瑚状微结构;激光刻蚀后在硅片表面的生成物主要是SiOx(x-1)和Si–O–Si键(1105 cm-1)的振动;在空气和纯水中激发出的荧光均为蓝光(420–470 nm),在各自最佳激发波长下,纯水中荧光强度比空气中强2到3倍,但是在可见光范围内荧光峰的位置和形状都基本没有发生变化. 研究表明:氧元素在光致发光增强上起着重要作用,光致发光最主要是由形成的氧缺陷SiOx(xx的多少决定了发光的强弱.

English Abstract

参考文献 (30)

目录

    /

    返回文章
    返回