搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多色宽带相干反斯托克斯拉曼散射过程的理论与实验研究

尹君 余锋 侯国辉 梁闰富 田宇亮 林子扬 牛憨笨

引用本文:
Citation:

多色宽带相干反斯托克斯拉曼散射过程的理论与实验研究

尹君, 余锋, 侯国辉, 梁闰富, 田宇亮, 林子扬, 牛憨笨

Theoretical and experimental study on the multi-color broadband coherent anti-Stokes Raman scattering processes

Yin Jun, Yu Feng, Hou Guo-Hui, Liang Run-Fu, Tian Yu-Liang, Lin Zi-Yang, Niu Han-Ben
PDF
导出引用
  • 宽带相干反斯托克斯拉曼散射(coherent anti-Stokes Raman scattering,CARS)光谱技术能够同时获取完整的分子CARS光谱信息,以准确识别和定量分析混合物中的不同成分或未知成分. 在宽带CARS光谱技术中,由于超连续谱激光有效光谱范围内各光谱成分的作用不同,分别会产生双色和三色CARS过程. 这里我们在理论上分析了宽带激发条件下两种CARS过程的产生条件,以及不同CARS光谱信号强度与各激发光功率之间的关系. 在此基础上,搭建了基于SC激光的宽带CARS光谱系统,分别实现了双色和三色CARS过程. 通过对获得的苯甲腈样品的CARS光谱信号进行函数拟合分析,实验验证了上述两个过程中CARS信号的强度与各激发光强度之间的函数关系. 理论和实验研究结果为进一步优化宽带时间分辨CARS光谱探测和显微系统,实现同时获取物质分子完整的CARS光谱信号提供了指导.
    In order to exactly distinguish and quantitatively analyze the different or unknown components in a mixture, the global molecular CARS spectra information should be obtained simultaneously with a broad-band coherent anti-Stokes Raman scattering (CARS) spectroscopy in supercontinuum. In a broad-band CARS spectroscopy, two-and three-color CARS processes are generated due to different functions of effective spectroscopic components in supercontinuum. Firstly, we theoretically analyzed the generation conditions of CARS signals and the relationships between their intensity and power of excitation lights in the two types of CARS process with the broad-band excitation. On this basis, the two types of CARS process are achieved with a home-built broad-band CARS spectroscopic system, respectively. Using the functional fitting analysis of the obtained CARS spectral signals of benzonitrile, the relationships between CARS signals and excitation lights are experimentally verified in two different kinds of CARS process. Further optimizations of broad-band time-resolved CARS spectroscopic and microscopic systems, for simultaneously obtaining the global CARS spectral signals of samples, can be achieved under the guidance of theoretical and experimental results.
    • 基金项目: 国家重点基础研究发展计划(973计划)(批准号:2012CB825802)、国家重大科学仪器设备开发专项(批准号:2012YQ150092)、国家自然科学基金重点项目(批准号:61235012)和国家自然科学基金青年科学基金(批准号:11204226)资助的课题.
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2012CB825802), the Specially Funded Program on National Key Scientific Instruments and Equipment Development of China (Grant No. 2012YQ150092), the Key Program of the National Natural Science Foundation of China (Grant No. 61235012), and the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 11204226).
    [1]

    Begley R F, Harvey A B, Byer R L 1974 Appl. Phys. Lett. 25 387

    [2]

    Chabay I, Klauminzer G K, Hudson B S 1976 Appl. Phys. Lett. 28 27

    [3]

    Igarashi R, Adachi Y, Maeda S 1980 J. Chem. Phys. 72 4308

    [4]

    Duncan M D, Reijntjes J, Manuccia T J 1982 Opt. Lett. 7 350

    [5]

    Zumbusch A, Holtom G R, Xie X S 1999 Phys. Rev. Lett. 82 4142

    [6]

    Cheng J X, Book L D, Xie X S 2001 Opt. Lett. 26 1341

    [7]

    Kano H, Hamaguchi H 2005 Appl. Phys. B 80 243

    [8]

    Kee T W, Zhao H X, Cicerone M T 2006 Opt. Expr. 14 3631

    [9]

    Lee Y J, Liu Y X, Cicerone M T 2007 Opt. Lett. 32 3370

    [10]

    Lee Y J, Cicerone M T 2008 App. Phys. Lett. 92 041108

    [11]

    Parekh S H, Lee Y J, Aamer K A, Cicerone M T 2010 Biophys. J. 99 2695

    [12]

    Lee Y J, Moon D, Migler K B, Cicerone M T 2011 Anal. Chem. 83 2733

    [13]

    Yu L Y, Yin J, Wan H, Liu X, Qu J L, Niu H B, Lin Z Y 2010 Acta Phys. Sin. 59 5406 (in Chinese)[于凌尧, 尹君, 万辉, 刘星, 屈军乐, 牛憨笨, 林子扬2010 物理学报59 5406]

    [14]

    Yin J, Yu L Y, Liu X, Wan H, Lin Z Y, Niu H B 2011 Chin. Phys. B 20 014206

    [15]

    Ranka J K, Windeler R S, Stentz A J 2000 Opt. Lett. 25 25

    [16]

    Coen S, Chau A H L, Leonhardt R, Harvey J D, Knight J C, Wadsworth W J, Russell P St J 2001 Opt. Lett. 26 1356

    [17]

    Apolonski A, Povazay B, Unterhuber A, Drexler W, Wadsworth W J, Knight J C, Russell P St J 2002 J. Opt. Soc. Am. B 19 2165

    [18]

    Hundertmark H, Kracht D, Wandt D, Fallnich C, Kumar V V R K, George A K, Knight J C, Russell P St J 2003 Opt. Expr. 11 3196

    [19]

    Leon-Saval S G, Birks T A, Wadsworth W J, Russell P St J, Mason M W 2004 Opt. Expr. 12 2864

    [20]

    Yin J, Yu L Y, Qu J L, Niu H B, Lin Z Y 2010 Acta Opt. Sin. 30 2136 (in Chinese)[尹君, 于凌尧, 屈军乐, 牛憨笨, 林子扬2010 光学学报30 2136]

  • [1]

    Begley R F, Harvey A B, Byer R L 1974 Appl. Phys. Lett. 25 387

    [2]

    Chabay I, Klauminzer G K, Hudson B S 1976 Appl. Phys. Lett. 28 27

    [3]

    Igarashi R, Adachi Y, Maeda S 1980 J. Chem. Phys. 72 4308

    [4]

    Duncan M D, Reijntjes J, Manuccia T J 1982 Opt. Lett. 7 350

    [5]

    Zumbusch A, Holtom G R, Xie X S 1999 Phys. Rev. Lett. 82 4142

    [6]

    Cheng J X, Book L D, Xie X S 2001 Opt. Lett. 26 1341

    [7]

    Kano H, Hamaguchi H 2005 Appl. Phys. B 80 243

    [8]

    Kee T W, Zhao H X, Cicerone M T 2006 Opt. Expr. 14 3631

    [9]

    Lee Y J, Liu Y X, Cicerone M T 2007 Opt. Lett. 32 3370

    [10]

    Lee Y J, Cicerone M T 2008 App. Phys. Lett. 92 041108

    [11]

    Parekh S H, Lee Y J, Aamer K A, Cicerone M T 2010 Biophys. J. 99 2695

    [12]

    Lee Y J, Moon D, Migler K B, Cicerone M T 2011 Anal. Chem. 83 2733

    [13]

    Yu L Y, Yin J, Wan H, Liu X, Qu J L, Niu H B, Lin Z Y 2010 Acta Phys. Sin. 59 5406 (in Chinese)[于凌尧, 尹君, 万辉, 刘星, 屈军乐, 牛憨笨, 林子扬2010 物理学报59 5406]

    [14]

    Yin J, Yu L Y, Liu X, Wan H, Lin Z Y, Niu H B 2011 Chin. Phys. B 20 014206

    [15]

    Ranka J K, Windeler R S, Stentz A J 2000 Opt. Lett. 25 25

    [16]

    Coen S, Chau A H L, Leonhardt R, Harvey J D, Knight J C, Wadsworth W J, Russell P St J 2001 Opt. Lett. 26 1356

    [17]

    Apolonski A, Povazay B, Unterhuber A, Drexler W, Wadsworth W J, Knight J C, Russell P St J 2002 J. Opt. Soc. Am. B 19 2165

    [18]

    Hundertmark H, Kracht D, Wandt D, Fallnich C, Kumar V V R K, George A K, Knight J C, Russell P St J 2003 Opt. Expr. 11 3196

    [19]

    Leon-Saval S G, Birks T A, Wadsworth W J, Russell P St J, Mason M W 2004 Opt. Expr. 12 2864

    [20]

    Yin J, Yu L Y, Qu J L, Niu H B, Lin Z Y 2010 Acta Opt. Sin. 30 2136 (in Chinese)[尹君, 于凌尧, 屈军乐, 牛憨笨, 林子扬2010 光学学报30 2136]

计量
  • 文章访问数:  2485
  • PDF下载量:  555
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-10-15
  • 修回日期:  2013-12-29
  • 刊出日期:  2014-04-05

多色宽带相干反斯托克斯拉曼散射过程的理论与实验研究

  • 1. 深圳大学光电工程学院, 深圳市 518060
  • 2. 光电子器件与系统(教育部/广东省)重点实验室, 深圳市 518060
    基金项目: 

    国家重点基础研究发展计划(973计划)(批准号:2012CB825802)、国家重大科学仪器设备开发专项(批准号:2012YQ150092)、国家自然科学基金重点项目(批准号:61235012)和国家自然科学基金青年科学基金(批准号:11204226)资助的课题.

摘要: 宽带相干反斯托克斯拉曼散射(coherent anti-Stokes Raman scattering,CARS)光谱技术能够同时获取完整的分子CARS光谱信息,以准确识别和定量分析混合物中的不同成分或未知成分. 在宽带CARS光谱技术中,由于超连续谱激光有效光谱范围内各光谱成分的作用不同,分别会产生双色和三色CARS过程. 这里我们在理论上分析了宽带激发条件下两种CARS过程的产生条件,以及不同CARS光谱信号强度与各激发光功率之间的关系. 在此基础上,搭建了基于SC激光的宽带CARS光谱系统,分别实现了双色和三色CARS过程. 通过对获得的苯甲腈样品的CARS光谱信号进行函数拟合分析,实验验证了上述两个过程中CARS信号的强度与各激发光强度之间的函数关系. 理论和实验研究结果为进一步优化宽带时间分辨CARS光谱探测和显微系统,实现同时获取物质分子完整的CARS光谱信号提供了指导.

English Abstract

参考文献 (20)

目录

    /

    返回文章
    返回