搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钡和铯释放的电离层扰动效应对比

朱肖丽 胡耀垓 赵正予 张援农

引用本文:
Citation:

钡和铯释放的电离层扰动效应对比

朱肖丽, 胡耀垓, 赵正予, 张援农

Comparison between ionospheric disturbances caused by barium and cesium

Zhu Xiao-Li, Hu Yao-Gai, Zhao Zheng-Yu, Zhang Yuan-Nong
PDF
HTML
导出引用
  • 碱金属或碱土金属在电离层释放后, 迅速在太阳辐射作用下发生光电离, 产生正离子和电子, 形成人工等离子体云团. 本文基于三维双成分流体模型, 考虑释放区域水平风场的影响, 探讨了钡和铯在电离层释放后的时空演化规律, 并对钡和铯的电离层扰动效应进行了对比. 模拟结果表明, 不考虑中性风场时, 生成的等离子体云团逐渐沿磁场被拉伸成椭球形结构, 同时, 膨胀的等离子体云会推开背景氧离子, 在释放中心形成氧离子密度空洞, 并在两侧产生两个对称的密度尖峰; 水平风场的存在会使得生成的离子云逆风侧的密度梯度变陡, 释放物质对背景氧离子的扰动也更大; 对比钡与铯的释放结果发现, 由于铯的扩散系数较小, 钡云的膨胀更为迅速, Ba+云团的覆盖区域更广; 而由于光电离率较大, 释放相同质量下铯的离子产率更高; 此外, Cs+的扫雪机效应比Ba+扫雪机更强, 氧离子密度空穴和凸起处的扰动也更大.
    After being released in the ionosphere, alkali-metal atoms will be rapidly photoionized by solar UV, producing positive ions and electrons, and forming artificial plasma cloud. Based on a three-dimensional two-species fluid model, considering both the loss of barium atoms due to photoionization and oxidation and the influence of horizontal wind field in the release region, the spatial-temporal evolution of the artificial plasma cloud is discussed. By taking into account the electromagnetic field force, pressure gradient, particle collisions and ion inertia, the ionospheric disturbance effects caused by barium and cesium are compared with each other. The simulation results show that the alkali metal rapidly expands after being released in the ionosphere, and the generated plasma cloud gradually forms an ellipsoidal structure from the inside to the outside under the constraint of magnetic field with considering no wind. Meanwhile, the expanded plasma cloud pushes away the background oxygen ions, forming an oxygen ion density hole in the release center and two symmetrical density bumps on both sides. In the absence of neutral wind, the plasma cloud is dominated by the movement along magnetic field, while considering the background neutral wind, the plasma cloud and background disturbance area will move along the direction of wind, so that the density gradient of plasma cloud becomes steepening on the upwind side. Although the movement of ion cloud across the magnetic field is constrained, the neutrals can pass through the magnetic field freely, so the ion cloud and neutral cloud will separate from each other slowly. Also, the presence of horizontal wind field will make a greater disturbance to the background oxygen ion. By comparing the simulation results of barium and cesium we can see that, qualitatively, the expansion characteristics of Cs+ and Ba+ as well as their effects on the background O+ are similar. Due to the small diffusion coefficient of cesium, the barium cloud expands more rapidly and the coverage area of Ba+ cloud is wider. Because of the large photoionization rate of cesium, the ionization yield of cesium is higher than that of barium when the same mass is released. In addition, the snowplow effect of Cs+ is stronger than that of Ba+, and the oxygen ion density holes and bumps caused by Cs+ are also larger.
      通信作者: 胡耀垓, yaogaihu@whu.edu.cn
      Corresponding author: Hu Yao-Gai, yaogaihu@whu.edu.cn
    [1]

    Foppl H, Haerendel G, Haser L, Lutjens P, Lust R, Melzner F, Meyer B, Neuss H, Rieger E 1967 Planet. Space Sci. 15 357Google Scholar

    [2]

    Haerendel G, Foppl H, Melzner F, Neuss H, Rieger E, Stocker J, Bauer O, Hofner H, Loidl J 1986 Nature 320 700Google Scholar

    [3]

    Caton R G, Pedersen T R, Groves K M, et al. 2017 Radio Sci. 52 539Google Scholar

    [4]

    Huba J D, Bernhardt P A, Lyon J G 1992 J. Geophys. Res. Space Phys. 97 11Google Scholar

    [5]

    Lloyd K H, Haerendel G 1973 J. Geophys. Res. 78 7389Google Scholar

    [6]

    Morse D L, Destler W W 1973 J. Geophys. Res. 78 7417Google Scholar

    [7]

    Bernhardt P A, Roussel-Dupre R A, Pongratz M B, et al. 1987 J. Geophys. Res. 92 5777Google Scholar

    [8]

    Zakharov Y P 2002 Adv. Space Res. 29 1335Google Scholar

    [9]

    Haerendel G, Lust R, Rieger E 1967 Planet. Space Sci. 15 1Google Scholar

    [10]

    Schunk R W, Szuszczewicz E P 1988 J. Geophys. Res. Space Phys. 93 12901Google Scholar

    [11]

    Mitchell H G, Fedder J A, Huba J D, Zalesak S T 1985 J. Geophys. Res. Space Phys. 90 11091Google Scholar

    [12]

    Rozhansky V A, Veselova I Y, Voskoboynikov S P 1990 Planet. Space Sci. 38 1375Google Scholar

    [13]

    Drake J F, Mulbrandon M, Huba J D 1988 Phys. Fluids 31 3412Google Scholar

    [14]

    Ma T Z, Schunk R W 1991 J. Geophys. Res. Space Phys. 96 5793Google Scholar

    [15]

    Ma T Z, Schunk R W 1994 J. Geophys. Res. 99 6331Google Scholar

    [16]

    Mendillo M, Hawkins G S, Klobuchar J A 1975 Science 18734 3

    [17]

    Klobuchar J A, Abdu M A 1989 J. Geophys. Res. Space Phys. 94 2721Google Scholar

    [18]

    Choueiri E Y, Oraevsky V N, Dokukin V S 2001 J. Geophys. Res. 106 25673Google Scholar

    [19]

    Bernhardt P A 1979 J. Geophys. Res. 84 793Google Scholar

    [20]

    Mendillo M, Semeter J, Noto J 1993 Adv. Space Res. 13 55

    [21]

    Scales W A, Bernhardt P A, Ganguli G 1994 J. Geophys. Res. 99 373Google Scholar

    [22]

    Kolomiitsev O P, Ruzhin Y Y, Egorov I B, Razinkov O G, Cherkashin Y N 1999 Phys. Chem. Earth Part C 24 393Google Scholar

    [23]

    黄文耿, 古士芬 2005 空间科学学报 25 254Google Scholar

    Huang W G, Gu S F 2005 Chin. J. Space Sci. 25 254Google Scholar

    [24]

    黄勇, 时家明, 袁忠才 2011 地球物理学报 54 1Google Scholar

    Huang Y, Shi J M, Yuan Z C 2011 Chin J. Geophys. 54 1Google Scholar

    [25]

    胡耀垓, 赵正予, 张援农 2010 物理学报 59 8293Google Scholar

    Hu Y G, Zhao Z Y, Zhang Y N 2010 Acta Phys. Sin. 59 8293Google Scholar

    [26]

    胡耀垓, 赵正予, 张援农 2013 物理学报 62 209401Google Scholar

    Hu Y G, Zhao Z Y, Zhang Y N 2013 Acta Phys. Sin. 62 209401Google Scholar

    [27]

    汪四成, 方涵先, 杨升高, 翁利斌 2012 地球物理学研究进展 27 2464

    Wang S C, Fang H X, Yang S G 2012 Progress in Geophys. 27 2464

    [28]

    赵海生, 许正文, 吴振森, 冯杰, 吴健, 徐彬, 徐彤, 胡艳莉 2016 物理学报 65 209401Google Scholar

    Zhao H S, Xu Z W, Wu Z S, Feng J, Wu J, Xu B, Xu T, Hu Y L 2016 Acta Phys. Sin. 65 209401Google Scholar

    [29]

    Li L, Xu R L 2002 Chin. Phys. Lett. 19 1214Google Scholar

    [30]

    胡耀垓, 赵正予, 张援农 2012 物理学报 61 089401Google Scholar

    Hu Y G, Zhao Z Y, Zhang Y N 2012 Acta Phys. Sin. 61 089401Google Scholar

    [31]

    谢良海 2013 博士学位论文(北京: 中国科学院大学)

    Xie L H 2013 Ph. D. Dissertation (Beijing: University of Chinese Academy of Sciences) (in Chinese)

    [32]

    Scholer, M 1970 Planet. Space Sci. 18 977Google Scholar

    [33]

    Pressman J, Marrmo F F, Aschenbrand L M 1960 Planet. Space Sci. 2 228Google Scholar

    [34]

    Holmgren G, Kintner P M, Kelley M C 1981 Adv. Space Res. 1 311Google Scholar

    [35]

    Eliason L, Lundin R, Holmgren G 1988 Adv. Space Res. 8 93

    [36]

    Bleecker D K, Bogaerts A, Gijbels R, Goedheer W 2004 Phys. Rev. E 69 056409Google Scholar

    [37]

    Xing Z, Anbang S, Le T, Guan J Z 2019 AIP Adv. 9 015117Google Scholar

  • 图 1  仿真算法流程图

    Fig. 1.  Flow chart of simulation algorithm.

    图 2  无中性风场时, 300 km高度释放10 kg钡后钡离子和氧离子的离子数密度分布(x-y平面) (a) Ba+, t = 5 s; (b) Ba+, t = 30 s; (c) Ba+, t = 200 s; (d) O+, t = 5 s; (e) O+, t = 30 s; (f) O+, t = 200 s

    Fig. 2.  Density distribution of Ba+ and O+ (in x-y plane) after 10 kg barium released at 300 km while no neutral wind is considered: (a) Ba+, t = 5 s; (b) Ba+, t = 30 s; (c) Ba+, t = 200 s; (d) O+, t = 5 s; (e) O+, t = 30 s; (f) O+, t = 200 s.

    图 3  无中性风场时, 300 km高度释放10 kg钡后钡离子和氧离子的粒子数密度分布(x-z平面) (a) O+, t = 5 s; (b) O+, t = 30 s; (c) O+, t = 200 s; (d) Ba+, t = 5 s; (e) Ba+, t = 30 s; (f) Ba+, t = 200 s

    Fig. 3.  Density distribution of Ba+ and O+ (in x-z plane) after 10 kg barium released at 300 km while no neutral wind is considered: (a) O+, t = 5 s; (b) O+, t = 30 s; (c) O+, t = 200 s; (d) Ba+, t = 5 s; (e) Ba+, t = 30 s; (f) Ba+, t = 200 s.

    图 4  存在x方向大小为1 km/s的中性风时, 300 km高度释放10 kg钡后钡离子和氧离子的粒子数密度分布(x-z平面) (a) O+, t = 5 s; (b) O+, t = 30 s; (c) O+, t = 200 s; (d) Ba+, t = 5 s; (e) Ba+, t = 30 s; (f) Ba+, t = 200 s

    Fig. 4.  Density distribution of Ba+ and O+ (in x-z plane) after 10 kg barium released at 300 km with a neutral wind of 1 km/s in the x direction: (a) O+, t = 5 s;(b) O+, t = 30 s; (c) O+, t = 200 s; (d) Ba+, t = 5 s; (e) Ba+, t = 30 s; (f) Ba+, t = 200 s.

    图 5  钡中性云团(绿色)和离子云团(蓝色)在释放后30 s时的三维分布示意图

    Fig. 5.  Three-dimensional density distribution of barium neutral cloud (green sphere) and ion cloud (blue sphere) at 30 s after release

    图 6  存在x方向大小为1 km/s的中性风时, 300 km高度释放10 kg铯的粒子数密度分布(x-z平面) (a) O+, t = 5 s; (b) O+, t = 30 s; (c) O+, t = 200 s; (d) Cs+, t = 5 s; (e) Cs+, t = 30 s; (f) Cs+, t = 200 s

    Fig. 6.  Density distribution of Cs+ and O+ (in x-z plane) after 10 kg cesium released at 300 km with a neutral wind of 1 km/s in the x direction: (a) O+, t = 5 s; (b) O+, t = 30 s; (c) O+, t = 200 s; (d) Cs+, t = 5 s; (e) Cs+, t = 30 s; (f) Cs+, t = 200 s.

    图 7  生成的等离子体云团的密度最大值(a)和背景氧离子的最大扰动值(b)随时间的变化

    Fig. 7.  The maximum density of artificial plasma cloud (a) and the maximum disturbance of background oxygen ion (a) versus time.

    表 1  主要仿真参数表

    Table 1.  The main simulation parameters.

    参数数值(来源)
    模拟时间201709151800LT
    释放地点(22°N, 109°E)
    释放高度/km300
    磁场强度/nT38860
    温度/K860
    地磁倾角32.4°
    地磁偏角–1.9°
    氧离子数密度/cm–39 × 105
    氧原子数密度/cm–33.06 × 109
    光电离率0.0357(Ba)[18]/0.05(Cs)[24]
    阻尼系数/s–10.0149(Ba)/0.0208(Cs)
    扩散系数/1010 $ \rm cm^2\cdot s^{-1} $2.94(Ba)/2.17(Cs)
    原子极化率/10–24 cm339.7(Ba)/59.6(Cs)
    下载: 导出CSV
  • [1]

    Foppl H, Haerendel G, Haser L, Lutjens P, Lust R, Melzner F, Meyer B, Neuss H, Rieger E 1967 Planet. Space Sci. 15 357Google Scholar

    [2]

    Haerendel G, Foppl H, Melzner F, Neuss H, Rieger E, Stocker J, Bauer O, Hofner H, Loidl J 1986 Nature 320 700Google Scholar

    [3]

    Caton R G, Pedersen T R, Groves K M, et al. 2017 Radio Sci. 52 539Google Scholar

    [4]

    Huba J D, Bernhardt P A, Lyon J G 1992 J. Geophys. Res. Space Phys. 97 11Google Scholar

    [5]

    Lloyd K H, Haerendel G 1973 J. Geophys. Res. 78 7389Google Scholar

    [6]

    Morse D L, Destler W W 1973 J. Geophys. Res. 78 7417Google Scholar

    [7]

    Bernhardt P A, Roussel-Dupre R A, Pongratz M B, et al. 1987 J. Geophys. Res. 92 5777Google Scholar

    [8]

    Zakharov Y P 2002 Adv. Space Res. 29 1335Google Scholar

    [9]

    Haerendel G, Lust R, Rieger E 1967 Planet. Space Sci. 15 1Google Scholar

    [10]

    Schunk R W, Szuszczewicz E P 1988 J. Geophys. Res. Space Phys. 93 12901Google Scholar

    [11]

    Mitchell H G, Fedder J A, Huba J D, Zalesak S T 1985 J. Geophys. Res. Space Phys. 90 11091Google Scholar

    [12]

    Rozhansky V A, Veselova I Y, Voskoboynikov S P 1990 Planet. Space Sci. 38 1375Google Scholar

    [13]

    Drake J F, Mulbrandon M, Huba J D 1988 Phys. Fluids 31 3412Google Scholar

    [14]

    Ma T Z, Schunk R W 1991 J. Geophys. Res. Space Phys. 96 5793Google Scholar

    [15]

    Ma T Z, Schunk R W 1994 J. Geophys. Res. 99 6331Google Scholar

    [16]

    Mendillo M, Hawkins G S, Klobuchar J A 1975 Science 18734 3

    [17]

    Klobuchar J A, Abdu M A 1989 J. Geophys. Res. Space Phys. 94 2721Google Scholar

    [18]

    Choueiri E Y, Oraevsky V N, Dokukin V S 2001 J. Geophys. Res. 106 25673Google Scholar

    [19]

    Bernhardt P A 1979 J. Geophys. Res. 84 793Google Scholar

    [20]

    Mendillo M, Semeter J, Noto J 1993 Adv. Space Res. 13 55

    [21]

    Scales W A, Bernhardt P A, Ganguli G 1994 J. Geophys. Res. 99 373Google Scholar

    [22]

    Kolomiitsev O P, Ruzhin Y Y, Egorov I B, Razinkov O G, Cherkashin Y N 1999 Phys. Chem. Earth Part C 24 393Google Scholar

    [23]

    黄文耿, 古士芬 2005 空间科学学报 25 254Google Scholar

    Huang W G, Gu S F 2005 Chin. J. Space Sci. 25 254Google Scholar

    [24]

    黄勇, 时家明, 袁忠才 2011 地球物理学报 54 1Google Scholar

    Huang Y, Shi J M, Yuan Z C 2011 Chin J. Geophys. 54 1Google Scholar

    [25]

    胡耀垓, 赵正予, 张援农 2010 物理学报 59 8293Google Scholar

    Hu Y G, Zhao Z Y, Zhang Y N 2010 Acta Phys. Sin. 59 8293Google Scholar

    [26]

    胡耀垓, 赵正予, 张援农 2013 物理学报 62 209401Google Scholar

    Hu Y G, Zhao Z Y, Zhang Y N 2013 Acta Phys. Sin. 62 209401Google Scholar

    [27]

    汪四成, 方涵先, 杨升高, 翁利斌 2012 地球物理学研究进展 27 2464

    Wang S C, Fang H X, Yang S G 2012 Progress in Geophys. 27 2464

    [28]

    赵海生, 许正文, 吴振森, 冯杰, 吴健, 徐彬, 徐彤, 胡艳莉 2016 物理学报 65 209401Google Scholar

    Zhao H S, Xu Z W, Wu Z S, Feng J, Wu J, Xu B, Xu T, Hu Y L 2016 Acta Phys. Sin. 65 209401Google Scholar

    [29]

    Li L, Xu R L 2002 Chin. Phys. Lett. 19 1214Google Scholar

    [30]

    胡耀垓, 赵正予, 张援农 2012 物理学报 61 089401Google Scholar

    Hu Y G, Zhao Z Y, Zhang Y N 2012 Acta Phys. Sin. 61 089401Google Scholar

    [31]

    谢良海 2013 博士学位论文(北京: 中国科学院大学)

    Xie L H 2013 Ph. D. Dissertation (Beijing: University of Chinese Academy of Sciences) (in Chinese)

    [32]

    Scholer, M 1970 Planet. Space Sci. 18 977Google Scholar

    [33]

    Pressman J, Marrmo F F, Aschenbrand L M 1960 Planet. Space Sci. 2 228Google Scholar

    [34]

    Holmgren G, Kintner P M, Kelley M C 1981 Adv. Space Res. 1 311Google Scholar

    [35]

    Eliason L, Lundin R, Holmgren G 1988 Adv. Space Res. 8 93

    [36]

    Bleecker D K, Bogaerts A, Gijbels R, Goedheer W 2004 Phys. Rev. E 69 056409Google Scholar

    [37]

    Xing Z, Anbang S, Le T, Guan J Z 2019 AIP Adv. 9 015117Google Scholar

  • [1] 杨雨森, 王林, 苟德梽, 唐正明. 等离子体-光子晶体阵列结构波导模型的电磁特性. 物理学报, 2024, 73(24): 245201. doi: 10.7498/aps.73.20241300
    [2] 张东荷雨, 刘金宝, 付洋洋. 激光维持等离子体多物理场耦合模型与仿真. 物理学报, 2024, 73(2): 025201. doi: 10.7498/aps.73.20231056
    [3] 杨楠楠, 王尚民, 张家良, 温小琼, 赵凯. 改进型机-电模型及脉冲等离子体推力器能量转化效率分析. 物理学报, 2024, 73(21): 215202. doi: 10.7498/aps.73.20241117
    [4] 张津硕, 孙辉, 杜志杰, 张雪航, 肖青梅, 范金蕤, 闫慧杰, 宋健. 预填充模式下同轴枪放电等离子体加速模型分析与优化. 物理学报, 2023, 72(15): 155202. doi: 10.7498/aps.72.20230463
    [5] 韩小英, 李凌霄, 戴振生, 郑无敌, 古培俊, 吴泽清. 一个快速模拟热稠密非平衡等离子体的碰撞辐射模型. 物理学报, 2021, 70(11): 115202. doi: 10.7498/aps.70.20201946
    [6] 孙俊超, 张宗国, 董焕河, 杨红卫. 尘埃等离子体中的分数阶模型及其Lump解. 物理学报, 2019, 68(21): 210201. doi: 10.7498/aps.68.20191045
    [7] 陈文波, 龚学余, 路兴强, 冯军, 廖湘柏, 黄国玉, 邓贤君. 基于动理论模型的一维等离子体电磁波传输特性分析. 物理学报, 2014, 63(21): 214101. doi: 10.7498/aps.63.214101
    [8] 何福顺, 李刘合, 李芬, 顿丹丹, 陶婵偲. 增强辉光放电等离子体离子注入的三维PIC/MC模拟. 物理学报, 2012, 61(22): 225203. doi: 10.7498/aps.61.225203
    [9] 钱利波, 朱樟明, 杨银堂. 一种考虑硅通孔电阻-电容效应的三维互连线模型. 物理学报, 2012, 61(6): 068001. doi: 10.7498/aps.61.068001
    [10] 石兰芳, 欧阳成, 陈丽华, 莫嘉琪. 一类大气等离子体反应扩散模型的解法. 物理学报, 2012, 61(5): 050203. doi: 10.7498/aps.61.050203
    [11] 李向东. 基于等离子体环境涨落的原子结构计算模型. 物理学报, 2011, 60(5): 053201. doi: 10.7498/aps.60.053201
    [12] 段耀勇, 郭永辉, 邱爱慈, 吴刚. 碰撞辐射稳态等离子体电荷态分布的一种扩展模型. 物理学报, 2010, 59(8): 5588-5595. doi: 10.7498/aps.59.5588
    [13] 孟立民, 滕爱萍, 李英骏, 程涛, 张杰. 基于自相似模型的二维X射线激光等离子体流体力学. 物理学报, 2009, 58(8): 5436-5442. doi: 10.7498/aps.58.5436
    [14] 吴 翊, 荣命哲, 杨 飞, 王小华, 马 强, 王伟宗. 引入6波段P-1辐射模型的三维空气电弧等离子体数值分析. 物理学报, 2008, 57(9): 5761-5767. doi: 10.7498/aps.57.5761
    [15] 宋法伦, 曹金祥, 王 舸. 弱电离等离子体对电磁波吸收的物理模型和数值求解. 物理学报, 2005, 54(2): 807-811. doi: 10.7498/aps.54.807
    [16] 王 龙. 等离子体中的颗粒成长模型. 物理学报, 1999, 48(6): 1072-1077. doi: 10.7498/aps.48.1072
    [17] 冯小兵, 章立源, 孙久勋. 双成分模型及YBCO/Pb结沿c轴的Josephson效应. 物理学报, 1997, 46(3): 596-603. doi: 10.7498/aps.46.596
    [18] 宫野, 温晓军, 张鹏云, 邓新绿. 圆柱模型下电子回旋共振微波等离子体离子输运过程的数值研究. 物理学报, 1997, 46(12): 2376-2383. doi: 10.7498/aps.46.2376
    [19] 张承福. 等离子体模型碰撞项的比较. 物理学报, 1986, 35(7): 947-952. doi: 10.7498/aps.35.947
    [20] 石长和. 双等离子体流模型中阿尔芬波的非几何光学近似解. 物理学报, 1983, 32(1): 25-32. doi: 10.7498/aps.32.25
计量
  • 文章访问数:  8132
  • PDF下载量:  71
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-21
  • 修回日期:  2019-11-06
  • 刊出日期:  2020-01-20

/

返回文章
返回