搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非线性扰动时滞长波系统孤波近似解

汪维刚 林万涛 石兰芳 莫嘉琪

引用本文:
Citation:

非线性扰动时滞长波系统孤波近似解

汪维刚, 林万涛, 石兰芳, 莫嘉琪

Approximate solution of solitary wave for nonlinear-disturbed time delay long-wave system

Wang Wei-Gang, Lin Wan-Tao, Shi Lan-Fang, Mo Jia-Qi
PDF
导出引用
  • 本文是讨论一类时滞非线性扰动长波系统的孤波解. 首先,引入非扰动的典型长波方程的精确解. 然后,用同伦映射和改进的技巧构造了非线性扰动时滞长波系统孤波行波解的近似展开式.
    The solitary wave approximate solutions for a class of nonlinear-disturbed time delay long-wave system are considered. First, we introduce into exact solution of a non-disturbed typical long-wave system. Then, by using the homotopic mapping and an improved technique, the approximate expansions of the traveling wave solutions for the nonlinear-disturbed time delay long-wave systems are constructed.
    • 基金项目: 国家自然科学基金(批准号:41275062,11202106)、江苏省高校自然科学研究项目(批准号:13KJB170016)、南京信息工程大学预研基金(批准号:20110385)和安徽高校省级自然科学研究项目(批准号:KJ2013A133)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 41275062, 11202106), the Natural Sciences Foundation from the Universities of Jiangsu Province, China (Grant No. 13KJB170016), the Advance Research Foundation in NUIST of China (Grant No. 20110385), and the Natural Science Foundation from the Education Bureau of Anhui Province, China (Grant No. KJ2013A133).
    [1]

    Parkes E J 2008 Chaos Solitons Fractals 154

    [2]

    Wang M L 1995 Phys. Lett. A 199 169

    [3]

    Sirendaoreji J S 2003 Phys. Lett. A 309 387

    [4]

    Yang J R, Mao J J 2008 Chin. Phys. Lett. 25 1527

    [5]

    Yang X D, Ruan H Y, Luo S Y 2007 Commum. Theor. Phys. 48 961

    [6]

    Yang J R, Mao J J 2008 Chin. Phys. B 17 4337

    [7]

    Tapgetusang, Sirendaoerji 2009 Acta Phys. Sin. 58 2121 (in Chinese) [套格图桑, 斯仁道尔吉 2009 物理学报 58 2121]

    [8]

    Ni W M, Wei J C 2006 J. Differ. Equations 221 158

    [9]

    Bartier J P 2006 Asymptotic Anal. 46 325

    [10]

    Libre J, da Silva P R 2007 J. Dyn. Differ. Equations 19 309

    [11]

    Faye L, Frenod, E, Seck D 2011 Discrete Contin. Dyn. Syst. 29 1001

    [12]

    Tian C R, Zhu P 2011 Acta Appl. Math. 121 157

    [13]

    Mo J Q 1989 Science in China Ser A 32 1306

    [14]

    Han X L, Zhao Z J, Cheng R J, Mo J Q 2013 Acta Phys. Sin. 62 110203 (in Chinese) [韩祥临, 赵振江, 程荣军, 莫嘉琪 2013 物理学报 62 110203]

    [15]

    Mo J Q, Wang H 2007 Acta Ecologica Sinica 27 4366

    [16]

    Mo J Q, Zhang W J, He M 2007 Acta Phys. Sin. 56 1843 (in Chinese) [莫嘉琪, 张伟江, 何铭 2007 物理学报 56 1843]

    [17]

    Mo J Q, Zhang W J, Chen X F 2007 Acta Phys. Sin. 56 6169 (in Chinese) [莫嘉琪, 张伟江, 陈贤峰 2007 物理学报 56 6169]

    [18]

    Shi L F, Lin W T, Lin Y H, Mo J Q 2013 Acta Phys. Sin. 62 010203 (in Chinese) [石兰芳, 林万涛, 林一骅, 莫嘉琪 2013 物理学报 62 010203]

    [19]

    Mo J Q, Zhang W J, He M 2006 Acta Phys. Sin. 55 3233 (in Chinese) [莫嘉琪, 张伟江, 何铭 2006 物理学报 55 3233]

    [20]

    Shi L F, Ouyang C, Mo J Q 2012 Acta Phys. Sin. 61 120201 (in Chinese) [石兰芳, 欧阳成, 莫嘉琪 2012 物理学报 61 120201]

    [21]

    Shi L F, Zhou X C, Mo J Q 2013 Acta Phys. Sin. 62 230202

    [22]

    Lin W T, Chen L H, Ouyang C, Mo J Q 2012 Acta Phys. Sin. 61 080204 (in Chinese) [林万涛, 陈丽华, 欧阳成, 莫嘉琪 2012 物理学报 61 080204]

    [23]

    Lin W T, Lin Y H, Shi L F, Mo J Q 2013 Acta Phys. Sin. 62 140202 (in Chinese) [林万涛, 林一骅, 石兰芳, 莫嘉琪 2013 物理学报 62 140202]

    [24]

    Lin W T, Zhang Y, Mo J Q 2013 Chin. Phys. B 22 030205

    [25]

    Liao S J 2004 Beyond Perturbation: Introduction to the Homotopy Analysis Method, New York, CRC Press Co

    [26]

    He J H 2002 Approximate Nonlinear Analytical Methods in Engineering and Sciences (Zhengzhou: Henan Science and Technology Press) (in Chinese)

    [27]

    Barbu L, Morosanu G 2007 Singularly Perturbed Boundary-Value Problems, Basel, Birkhauserm Verlag AG

    [28]

    Taogetusang, Sirendaoerji 2006 Acta Phys. Sin. 55 3246 (in Chinese) [套格图桑, 斯仁道尔吉 2006 物理学报 55 3246]

  • [1]

    Parkes E J 2008 Chaos Solitons Fractals 154

    [2]

    Wang M L 1995 Phys. Lett. A 199 169

    [3]

    Sirendaoreji J S 2003 Phys. Lett. A 309 387

    [4]

    Yang J R, Mao J J 2008 Chin. Phys. Lett. 25 1527

    [5]

    Yang X D, Ruan H Y, Luo S Y 2007 Commum. Theor. Phys. 48 961

    [6]

    Yang J R, Mao J J 2008 Chin. Phys. B 17 4337

    [7]

    Tapgetusang, Sirendaoerji 2009 Acta Phys. Sin. 58 2121 (in Chinese) [套格图桑, 斯仁道尔吉 2009 物理学报 58 2121]

    [8]

    Ni W M, Wei J C 2006 J. Differ. Equations 221 158

    [9]

    Bartier J P 2006 Asymptotic Anal. 46 325

    [10]

    Libre J, da Silva P R 2007 J. Dyn. Differ. Equations 19 309

    [11]

    Faye L, Frenod, E, Seck D 2011 Discrete Contin. Dyn. Syst. 29 1001

    [12]

    Tian C R, Zhu P 2011 Acta Appl. Math. 121 157

    [13]

    Mo J Q 1989 Science in China Ser A 32 1306

    [14]

    Han X L, Zhao Z J, Cheng R J, Mo J Q 2013 Acta Phys. Sin. 62 110203 (in Chinese) [韩祥临, 赵振江, 程荣军, 莫嘉琪 2013 物理学报 62 110203]

    [15]

    Mo J Q, Wang H 2007 Acta Ecologica Sinica 27 4366

    [16]

    Mo J Q, Zhang W J, He M 2007 Acta Phys. Sin. 56 1843 (in Chinese) [莫嘉琪, 张伟江, 何铭 2007 物理学报 56 1843]

    [17]

    Mo J Q, Zhang W J, Chen X F 2007 Acta Phys. Sin. 56 6169 (in Chinese) [莫嘉琪, 张伟江, 陈贤峰 2007 物理学报 56 6169]

    [18]

    Shi L F, Lin W T, Lin Y H, Mo J Q 2013 Acta Phys. Sin. 62 010203 (in Chinese) [石兰芳, 林万涛, 林一骅, 莫嘉琪 2013 物理学报 62 010203]

    [19]

    Mo J Q, Zhang W J, He M 2006 Acta Phys. Sin. 55 3233 (in Chinese) [莫嘉琪, 张伟江, 何铭 2006 物理学报 55 3233]

    [20]

    Shi L F, Ouyang C, Mo J Q 2012 Acta Phys. Sin. 61 120201 (in Chinese) [石兰芳, 欧阳成, 莫嘉琪 2012 物理学报 61 120201]

    [21]

    Shi L F, Zhou X C, Mo J Q 2013 Acta Phys. Sin. 62 230202

    [22]

    Lin W T, Chen L H, Ouyang C, Mo J Q 2012 Acta Phys. Sin. 61 080204 (in Chinese) [林万涛, 陈丽华, 欧阳成, 莫嘉琪 2012 物理学报 61 080204]

    [23]

    Lin W T, Lin Y H, Shi L F, Mo J Q 2013 Acta Phys. Sin. 62 140202 (in Chinese) [林万涛, 林一骅, 石兰芳, 莫嘉琪 2013 物理学报 62 140202]

    [24]

    Lin W T, Zhang Y, Mo J Q 2013 Chin. Phys. B 22 030205

    [25]

    Liao S J 2004 Beyond Perturbation: Introduction to the Homotopy Analysis Method, New York, CRC Press Co

    [26]

    He J H 2002 Approximate Nonlinear Analytical Methods in Engineering and Sciences (Zhengzhou: Henan Science and Technology Press) (in Chinese)

    [27]

    Barbu L, Morosanu G 2007 Singularly Perturbed Boundary-Value Problems, Basel, Birkhauserm Verlag AG

    [28]

    Taogetusang, Sirendaoerji 2006 Acta Phys. Sin. 55 3246 (in Chinese) [套格图桑, 斯仁道尔吉 2006 物理学报 55 3246]

  • [1] 韩敏, 张雅美, 张檬. 具有双重时滞的时变耦合复杂网络的牵制外同步研究. 物理学报, 2015, 64(7): 070506. doi: 10.7498/aps.64.070506
    [2] 许永红, 韩祥临, 石兰芳, 莫嘉琪. 薛定谔扰动耦合系统孤波的行波近似解法. 物理学报, 2014, 63(9): 090204. doi: 10.7498/aps.63.090204
    [3] 李晓静, 陈绚青, 严静. 一类具时滞的厄尔尼诺-南方涛动充电-放电振子模型的Hopf分岔与周期解问题. 物理学报, 2013, 62(16): 160202. doi: 10.7498/aps.62.160202
    [4] 欧阳成, 石兰芳, 林万涛, 莫嘉琪. (2+1)维扰动时滞破裂孤波方程行波解的摄动方法. 物理学报, 2013, 62(17): 170201. doi: 10.7498/aps.62.170201
    [5] 许永红, 姚静荪, 莫嘉琪. (3+1)维Burgers扰动系统孤波的解法. 物理学报, 2012, 61(2): 020202. doi: 10.7498/aps.61.020202
    [6] 周先春, 林万涛, 林一骅, 莫嘉琪. 大气非均匀量子等离子体孤波解. 物理学报, 2012, 61(24): 240202. doi: 10.7498/aps.61.240202
    [7] 陈琼, 杨先清, 赵新印, 王振辉, 赵跃民. 周期型二元颗粒链中孤波传播的二体碰撞近似分析. 物理学报, 2012, 61(4): 044501. doi: 10.7498/aps.61.044501
    [8] 陶洪峰, 胡寿松. 参数未知分段混沌系统的时滞广义投影同步. 物理学报, 2011, 60(1): 010514. doi: 10.7498/aps.60.010514
    [9] 莫嘉琪. 一类非线性尘埃等离子体孤波解. 物理学报, 2011, 60(3): 030203. doi: 10.7498/aps.60.030203
    [10] 汪娜, 倪明康. 经典物理中的扰动时滞模型解. 物理学报, 2011, 60(5): 050203. doi: 10.7498/aps.60.050203
    [11] 刘爽, 刘彬, 张业宽, 闻岩. 一类时滞非线性相对转动系统的Hopf分岔与周期解的稳定性. 物理学报, 2010, 59(1): 38-43. doi: 10.7498/aps.59.38
    [12] 莫嘉琪, 张伟江, 陈贤峰. 一类强非线性发展方程孤波变分迭代解法. 物理学报, 2009, 58(11): 7397-7401. doi: 10.7498/aps.58.7397
    [13] 莫嘉琪, 林万涛. 副热带圈和赤道太平洋年代际变更的海-气振子模型解的同伦映射方法. 物理学报, 2007, 56(10): 5565-5568. doi: 10.7498/aps.56.5565
    [14] 莫嘉琪, 林万涛. 一类大气浅水波方程的近似解. 物理学报, 2007, 56(7): 3662-3666. doi: 10.7498/aps.56.3662
    [15] 王占山, 张化光. 时滞递归神经网络中神经抑制的作用. 物理学报, 2006, 55(11): 5674-5680. doi: 10.7498/aps.55.5674
    [16] 韩祥临. 一个燃烧模型的近似解. 物理学报, 2004, 53(12): 4061-4064. doi: 10.7498/aps.53.4061
    [17] 段文山, 洪学仁. 弱相对论等离子体横向扰动下的离子声孤波. 物理学报, 2003, 52(6): 1337-1339. doi: 10.7498/aps.52.1337
    [18] 徐桂琼, 李志斌. 构造非线性发展方程孤波解的混合指数方法. 物理学报, 2002, 51(5): 946-950. doi: 10.7498/aps.51.946
    [19] 李志斌, 姚若侠. 非线性耦合微分方程组的精确解析解. 物理学报, 2001, 50(11): 2062-2067. doi: 10.7498/aps.50.2062
    [20] 李志斌, 潘素起. 广义五阶KdV方程的孤波解与孤子解. 物理学报, 2001, 50(3): 402-405. doi: 10.7498/aps.50.402
计量
  • 文章访问数:  2770
  • PDF下载量:  453
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-12-10
  • 修回日期:  2014-01-26
  • 刊出日期:  2014-06-05

非线性扰动时滞长波系统孤波近似解

  • 1. 安庆师范学院桐城教学部, 桐城 231402;
  • 2. 中国科学院大气物理研究所, 大气科学和地球流体力学数值模拟国家重点实验室, 北京 100029;
  • 3. 南京信息工程大学数学与统计学院, 南京 210044;
  • 4. 安徽师范大学数学系, 芜湖 241003
    基金项目: 国家自然科学基金(批准号:41275062,11202106)、江苏省高校自然科学研究项目(批准号:13KJB170016)、南京信息工程大学预研基金(批准号:20110385)和安徽高校省级自然科学研究项目(批准号:KJ2013A133)资助的课题.

摘要: 本文是讨论一类时滞非线性扰动长波系统的孤波解. 首先,引入非扰动的典型长波方程的精确解. 然后,用同伦映射和改进的技巧构造了非线性扰动时滞长波系统孤波行波解的近似展开式.

English Abstract

参考文献 (28)

目录

    /

    返回文章
    返回