搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

入射能量对Au/Au(111)薄膜生长影响的分子动力学模拟

颜超 黄莉莉 何兴道

引用本文:
Citation:

入射能量对Au/Au(111)薄膜生长影响的分子动力学模拟

颜超, 黄莉莉, 何兴道

Molecular dynamics simulation of the effect of incident energy on the growth of Au/Au (111) thin film

Yan Chao, Huang Li-Li, He Xing-Dao
PDF
导出引用
  • 利用分子动力学模拟了Au原子在Au(111)表面低能沉积的动力学过程. 采用嵌入原子方法的原子间相互作用势,通过对沉积层原子结构的分析和薄膜表面粗糙度、层覆盖率的计算,研究了沉积粒子能量对薄膜质量的影响及其机制. 结果表明:当入射能量Ein Ein≥ 25 eV 时,沉积层表面原子结构出现了较为明显的晶界,沉积原子注入到基体表面第三层及以下,随着入射能量的增加,薄膜表面粗糙度增加,沉积层和基体表层原子排列越不规则,载能沉积会降低基体内部的稳定性,导致基体和薄膜内部缺陷的产生,降低薄膜质量. 此外,当基体内部某层沉积原子数约等于该层总原子数的一半时,沉积原子将能穿过该层进入到基体内部更深层.
    The low-energy bombardment on Au (111) surface by Au atoms is studied by molecular dynamics (MD) simulation. The atomic interaction potential of embedded atom method is used in the simulation. The incident-energy effects on the morphologies and the surface roughness values of the deposited films are observed and summarized. The incident energy (Ein) varies from 0.1 eV to 50 eV. The transition of incident energy dependence occurs when the energy value is about 25 eV. The incident energy of about 25 eV is the sputtering threshold of Au (111) substrate. When the incident energy is lower than 25 eV, no atoms can be implanted into the depth beyond the second layer and all atoms are in face-centered cubic (111) arrangement without dislocation. The surface roughness decreases with the increase of the incident energy. For the case of Ein≥25 eV, the deposited atoms reach the third layer. When the number of atoms deposited in a substrate layer reaches about half the total number of atoms in this layer, the deposited atoms could go throgh this laer and enter into a deeper layer in the substrate. Surface roughness increases with the increase of the incident energy, and the energetic deposition can produce defects in both substrate and film.
    [1]

    Pagon A M, Partridge J G, Hubbard P, Taylor M B, McCulloch D G, Doyle E D, Latham K, Bradby J E, Borisenko K B, Li G 2010 Surf. Coat. Technol. 204 3552

    [2]

    ElGaz H, Abdel-Rahman E, Salem H G, Nassar F 2010 Appl. Surf. Sci. 256 2056

    [3]

    Zhao H W, Bie Q S, Du J, Lu M, Sui Y X, Zhai H R, Xia H 1997 Acta Phys. Sin. 46 2047 (in Chinese)[赵宏武, 别青山, 杜军, 鹿牧, 眭云霞, 翟宏如, 夏慧 1997 物理学报 46 2047]

    [4]

    Zhang C, L H F, Zhang Q Y 2002 Acta Phys. Sin. 51 2329 (in Chinese)[张超, 吕海峰, 张庆瑜 2002 物理学报 51 2329]

    [5]

    Chen M, Wei H L, Liu Z L, Yao K L 2001 Acta Phys. Sin. 50 2446 (in Chinese)[陈敏, 魏和林, 刘祖黎, 姚凯伦 2001 物理学报 50 2446]

    [6]

    Colligon J S 1995 J. Vac. Sci. Technol. A 13 1649

    [7]

    Zhang Q Y 1999 J. Dalian Univ. Tech. 39 730 (in Chinese) [张庆瑜 1999 大连理工大学学报 39 730]

    [8]

    Ye Z Y, Zhang Q Y 2002 Acta Phys. Sin. 51 2798 (in Chinese)[叶子燕, 张庆瑜 2002 物理学报 51 2798]

    [9]

    Pereira Z S, Silva da E Z 2010 Phys. Rev. B 81 195417

    [10]

    Hwang S F, Li Y H, Hong Z H 2012 Comput. Mater. Sci. 56 85

    [11]

    Gong H F, Lu W, Wang L M, Li G P, Zhang S X 2012 Comput. Mater. Sci. 65 230

    [12]

    Gong H F, Lu W, Wang L M, Li G P, Zhang S X 2012 J. Appl. Phys. 112 024903

    [13]

    Hong Z H, Hwang S F, Fang T H 2010 Comput. Mater. Sci. 48 520

    [14]

    Liu M L, Zhang Z N, Li W, Zhao Q, Qi Y, Zhang L 2009 Acta Phys. Sin. 58 S199 (in Chinese)[刘美林, 张宗宁, 李蔚, 赵骞, 祁阳, 张林 2009 物理学报 58 S199]

    [15]

    Jing X B, Liu Z L, Yao K L 2012 Appl. Surf. Sci. 258 2771

    [16]

    Cao Y Z, Zhang J J, Sun T, Yan Y D, Yu F L 2010 Appl. Surf. Sci. 256 5993

    [17]

    Zhang Y J, Dong G N, Mao H J, Xie Y B 2007 Chin. Sci. Bull. 52 2813 (in Chinese)[张宇军, 董光能, 毛军红, 谢友柏 2007 科学通报 52 2813]

    [18]

    Huang X Y, Cheng X L, Xu J J, Wu W D 2012 Acta Phys. Sin. 61 096801 (in Chinese)[黄晓玉, 程新路, 徐嘉靖, 吴卫东 2012 物理学报 61 096801]

    [19]

    Huang X Y, Cheng X L, Xu J J, Wu W D 2012 Acta Phys. Sin. 61 016805 (in Chinese)[黄晓玉, 程新路, 徐嘉靖, 吴卫东 2012 物理学报 61 016805]

    [20]

    Yan C, Duan J H, He X D 2010 Acta Phys. Sin. 59 8807 (in Chinese)[颜超, 段军红, 何兴道 2010 物理学报 59 8807]

    [21]

    Yan C, L H F, Zhang C, Zhang Q Y 2006 Acta Phys. Sin. 55 1351 (in Chinese)[颜超, 吕海峰, 张超, 张庆瑜 2006 物理学报 55 1351]

    [22]

    Daw M S, Baskes M I 1984 Phys. Rev. B 29 6443

    [23]

    Foiles S M, Baskes M I, Daw M S 1986 Phys. Rev. B 33 7983

    [24]

    Swope W C, Andersen H C, Berens P H, Wilson K R 1982 J. Chem. Phys. 76 637

    [25]

    Adamović D, Chirita V, Mnger E P, Hultman L, Greene J E 2007 Phys. Rev. B 76 115418

    [26]

    Jing X B 2011 Ph. D. Dissertation (Wuhan: Huazhong University of Science and Technology) (in Chinese) [荆兴斌 2011 博士学位论文 (武汉: 华中科技大学)]

    [27]

    Clavero C, Cebollada A, Armelles G, Fruchart O 2010 J. Magn. Magn. Mater. 322 647

    [28]

    Singh R K, Naravan J 1990 Phys. Rev. B 41 8843

    [29]

    Meyerheim H L, Przybylski M, Ernst A, Shi Y, Henk J, Soyka E, Kirschner J 2007 Phys. Rev. B 76 035425

    [30]

    Lee S H, Kwak E H, Kim H S, Lee S W, Jeong G H 2013 Thin Solid Films 547 188

    [31]

    Yan C, Zhang C, Zhang Q Y, Liu T W, Huang H 2009 Appl. Surf. Sci. 255 3875

  • [1]

    Pagon A M, Partridge J G, Hubbard P, Taylor M B, McCulloch D G, Doyle E D, Latham K, Bradby J E, Borisenko K B, Li G 2010 Surf. Coat. Technol. 204 3552

    [2]

    ElGaz H, Abdel-Rahman E, Salem H G, Nassar F 2010 Appl. Surf. Sci. 256 2056

    [3]

    Zhao H W, Bie Q S, Du J, Lu M, Sui Y X, Zhai H R, Xia H 1997 Acta Phys. Sin. 46 2047 (in Chinese)[赵宏武, 别青山, 杜军, 鹿牧, 眭云霞, 翟宏如, 夏慧 1997 物理学报 46 2047]

    [4]

    Zhang C, L H F, Zhang Q Y 2002 Acta Phys. Sin. 51 2329 (in Chinese)[张超, 吕海峰, 张庆瑜 2002 物理学报 51 2329]

    [5]

    Chen M, Wei H L, Liu Z L, Yao K L 2001 Acta Phys. Sin. 50 2446 (in Chinese)[陈敏, 魏和林, 刘祖黎, 姚凯伦 2001 物理学报 50 2446]

    [6]

    Colligon J S 1995 J. Vac. Sci. Technol. A 13 1649

    [7]

    Zhang Q Y 1999 J. Dalian Univ. Tech. 39 730 (in Chinese) [张庆瑜 1999 大连理工大学学报 39 730]

    [8]

    Ye Z Y, Zhang Q Y 2002 Acta Phys. Sin. 51 2798 (in Chinese)[叶子燕, 张庆瑜 2002 物理学报 51 2798]

    [9]

    Pereira Z S, Silva da E Z 2010 Phys. Rev. B 81 195417

    [10]

    Hwang S F, Li Y H, Hong Z H 2012 Comput. Mater. Sci. 56 85

    [11]

    Gong H F, Lu W, Wang L M, Li G P, Zhang S X 2012 Comput. Mater. Sci. 65 230

    [12]

    Gong H F, Lu W, Wang L M, Li G P, Zhang S X 2012 J. Appl. Phys. 112 024903

    [13]

    Hong Z H, Hwang S F, Fang T H 2010 Comput. Mater. Sci. 48 520

    [14]

    Liu M L, Zhang Z N, Li W, Zhao Q, Qi Y, Zhang L 2009 Acta Phys. Sin. 58 S199 (in Chinese)[刘美林, 张宗宁, 李蔚, 赵骞, 祁阳, 张林 2009 物理学报 58 S199]

    [15]

    Jing X B, Liu Z L, Yao K L 2012 Appl. Surf. Sci. 258 2771

    [16]

    Cao Y Z, Zhang J J, Sun T, Yan Y D, Yu F L 2010 Appl. Surf. Sci. 256 5993

    [17]

    Zhang Y J, Dong G N, Mao H J, Xie Y B 2007 Chin. Sci. Bull. 52 2813 (in Chinese)[张宇军, 董光能, 毛军红, 谢友柏 2007 科学通报 52 2813]

    [18]

    Huang X Y, Cheng X L, Xu J J, Wu W D 2012 Acta Phys. Sin. 61 096801 (in Chinese)[黄晓玉, 程新路, 徐嘉靖, 吴卫东 2012 物理学报 61 096801]

    [19]

    Huang X Y, Cheng X L, Xu J J, Wu W D 2012 Acta Phys. Sin. 61 016805 (in Chinese)[黄晓玉, 程新路, 徐嘉靖, 吴卫东 2012 物理学报 61 016805]

    [20]

    Yan C, Duan J H, He X D 2010 Acta Phys. Sin. 59 8807 (in Chinese)[颜超, 段军红, 何兴道 2010 物理学报 59 8807]

    [21]

    Yan C, L H F, Zhang C, Zhang Q Y 2006 Acta Phys. Sin. 55 1351 (in Chinese)[颜超, 吕海峰, 张超, 张庆瑜 2006 物理学报 55 1351]

    [22]

    Daw M S, Baskes M I 1984 Phys. Rev. B 29 6443

    [23]

    Foiles S M, Baskes M I, Daw M S 1986 Phys. Rev. B 33 7983

    [24]

    Swope W C, Andersen H C, Berens P H, Wilson K R 1982 J. Chem. Phys. 76 637

    [25]

    Adamović D, Chirita V, Mnger E P, Hultman L, Greene J E 2007 Phys. Rev. B 76 115418

    [26]

    Jing X B 2011 Ph. D. Dissertation (Wuhan: Huazhong University of Science and Technology) (in Chinese) [荆兴斌 2011 博士学位论文 (武汉: 华中科技大学)]

    [27]

    Clavero C, Cebollada A, Armelles G, Fruchart O 2010 J. Magn. Magn. Mater. 322 647

    [28]

    Singh R K, Naravan J 1990 Phys. Rev. B 41 8843

    [29]

    Meyerheim H L, Przybylski M, Ernst A, Shi Y, Henk J, Soyka E, Kirschner J 2007 Phys. Rev. B 76 035425

    [30]

    Lee S H, Kwak E H, Kim H S, Lee S W, Jeong G H 2013 Thin Solid Films 547 188

    [31]

    Yan C, Zhang C, Zhang Q Y, Liu T W, Huang H 2009 Appl. Surf. Sci. 255 3875

  • [1] 于航, 张冉, 杨帆, 李桦. 气体-表面相互作用中动量和能量分量间转化机制的分子动力学研究. 物理学报, 2021, 70(2): 024702. doi: 10.7498/aps.70.20201192
    [2] 张硕, 龙连春, 刘静毅, 杨洋. 分子动力学方法研究缺陷对铁单质薄膜磁致伸缩的影响. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211177
    [3] 白清顺, 窦昱昊, 何欣, 张爱民, 郭永博. 基于分子动力学模拟的铜晶面石墨烯沉积生长机理. 物理学报, 2020, 69(22): 226102. doi: 10.7498/aps.69.20200781
    [4] 王云天, 曾祥国, 杨鑫. 高应变率下温度对单晶铁中孔洞成核与生长影响的分子动力学研究. 物理学报, 2019, 68(24): 246102. doi: 10.7498/aps.68.20190920
    [5] 刘强, 郭巧能, 钱相飞, 王海宁, 郭睿林, 肖志杰, 裴海蛟. 循环载荷下纳米铜/铝薄膜孔洞形核、生长及闭合的分子动力学模拟. 物理学报, 2019, 68(13): 133101. doi: 10.7498/aps.68.20181901
    [6] 陈仙, 王炎武, 王晓艳, 安书董, 王小波, 赵玉清. 非晶氧化钛薄膜形成过程中钛离子能量对表面结构影响的机理. 物理学报, 2014, 63(24): 246801. doi: 10.7498/aps.63.246801
    [7] 兰惠清, 徐藏. 掺硅类金刚石薄膜摩擦过程的分子动力学模拟. 物理学报, 2012, 61(13): 133101. doi: 10.7498/aps.61.133101
    [8] 任树洋, 任忠鸣, 任维丽. 晶粒尺寸对气相沉积薄膜磁取向生长的影响研究. 物理学报, 2011, 60(1): 016104. doi: 10.7498/aps.60.016104
    [9] 杨平, 吴勇胜, 许海锋, 许鲜欣, 张立强, 李培. TiO2/ZnO纳米薄膜界面热导率的分子动力学模拟. 物理学报, 2011, 60(6): 066601. doi: 10.7498/aps.60.066601
    [10] 何安民, 邵建立, 王裴, 秦承森. 单晶Cu(001)薄膜塑性变形的分子动力学模拟. 物理学报, 2010, 59(12): 8836-8842. doi: 10.7498/aps.59.8836
    [11] 马颖, 陈尚达, 谢国锋. SiC晶界薄膜的变电荷分子动力学模拟. 物理学报, 2009, 58(11): 7792-7796. doi: 10.7498/aps.58.7792
    [12] 唐超, 吉璐, 孟利军, 孙立忠, 张凯旺, 钟建新. 6H-SiC(0001)表面graphene逐层生长的分子动力学研究. 物理学报, 2009, 58(11): 7815-7820. doi: 10.7498/aps.58.7815
    [13] 刘美林, 张宗宁, 李蔚, 赵骞, 祁阳, 张林. MgO(001)表面上沉积MgO薄膜过程的分子动力学模拟. 物理学报, 2009, 58(13): 199-S203. doi: 10.7498/aps.58.199
    [14] 李 勇, 孙成伟, 刘志文, 张庆瑜. 磁控溅射ZnO薄膜生长的等离子体发射光谱研究. 物理学报, 2006, 55(8): 4232-4237. doi: 10.7498/aps.55.4232
    [15] 谢国锋, 王德武, 应纯同. 改进的DLA方法模拟薄膜二维生长. 物理学报, 2005, 54(5): 2212-2219. doi: 10.7498/aps.54.2212
    [16] 杨全文, 朱如曾, 文玉华. 纳米铜团簇在常温和升温过程中能量特征的分子动力学研究. 物理学报, 2005, 54(1): 89-95. doi: 10.7498/aps.54.89
    [17] 周耐根, 周 浪. 外延生长薄膜中失配位错形成条件的分子动力学模拟研究. 物理学报, 2005, 54(7): 3278-3283. doi: 10.7498/aps.54.3278
    [18] 郑小平, 张佩峰, 刘 军, 贺德衍, 马健泰. 薄膜外延生长的计算机模拟. 物理学报, 2004, 53(8): 2687-2693. doi: 10.7498/aps.53.2687
    [19] 王晓平, 谢 峰, 石勤伟, 赵特秀. 晶格失配对异质外延超薄膜生长中成核特性的影响. 物理学报, 2004, 53(8): 2699-2704. doi: 10.7498/aps.53.2699
    [20] 陈敏, 魏合林, 刘祖黎, 姚凯伦. 沉积粒子能量对薄膜早期生长过程的影响. 物理学报, 2001, 50(12): 2446-2451. doi: 10.7498/aps.50.2446
计量
  • 文章访问数:  3327
  • PDF下载量:  409
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-10-21
  • 修回日期:  2014-01-23
  • 刊出日期:  2014-06-05

入射能量对Au/Au(111)薄膜生长影响的分子动力学模拟

  • 1. 南昌航空大学测试与光电学院, 无损检测技术教育部重点实验室, 南昌 330063

摘要: 利用分子动力学模拟了Au原子在Au(111)表面低能沉积的动力学过程. 采用嵌入原子方法的原子间相互作用势,通过对沉积层原子结构的分析和薄膜表面粗糙度、层覆盖率的计算,研究了沉积粒子能量对薄膜质量的影响及其机制. 结果表明:当入射能量Ein Ein≥ 25 eV 时,沉积层表面原子结构出现了较为明显的晶界,沉积原子注入到基体表面第三层及以下,随着入射能量的增加,薄膜表面粗糙度增加,沉积层和基体表层原子排列越不规则,载能沉积会降低基体内部的稳定性,导致基体和薄膜内部缺陷的产生,降低薄膜质量. 此外,当基体内部某层沉积原子数约等于该层总原子数的一半时,沉积原子将能穿过该层进入到基体内部更深层.

English Abstract

参考文献 (31)

目录

    /

    返回文章
    返回