搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

太赫兹与远红外频段下铝质目标电磁特性与计算

王瑞君 邓彬 王宏强 秦玉亮

引用本文:
Citation:

太赫兹与远红外频段下铝质目标电磁特性与计算

王瑞君, 邓彬, 王宏强, 秦玉亮

Electromagnetic scattering characteristic of aluminous targets in the terahertz and far infrared region

Wang Rui-Jun, Deng Bin, Wang Hong-Qiang, Qin Yu-Liang
PDF
导出引用
  • 在太赫兹与远红外频段,铝处于由导体到介质的过渡,研究该频段铝质目标与电磁波的相互作用机理对于实现太赫兹频段目标精确电磁散射计算具有重要意义. 基于实验测量数据,设计有效误差准则模型拟合得到了太赫兹与远红外频段铝的介电系数模型;基于拟合模型通过推导过渡阶段不同损耗机理下铝中传播电磁波的空间相位系数与铝的波阻抗等参数,分析了太赫兹与远红外频段电磁波在铝中的透射与反射特性,给出了铝的反射率关于频率的变化曲线. 结果表明铝中电磁波传播参数从微波向太赫兹频段过渡时具有很好的连续性与一致性;基于阻抗边界条件的雷达散射截面计算结果表明太赫兹频段光滑铝质目标可视做理想导体进行计算,太赫兹雷达散射截面测量中可利用光滑铝板或铝球做为定标体.
    In the terahertz and far infrared region, aluminum is in a state of transition from conductor to dielectric, and the research of the interaction between aluminous target and electromagnetic wave is meaningful for scattering prediction of targets. With the available error criterion model, dielectric function of aluminum is determined by fitting to experimental data in the terahertz and far infrared region. The transmitted parameters in aluminum are deduced by considering different loss mechanisms. Reflection and transmission characteristics on the interface of aluminum are investigated, and the reflection coefficients are given as a function of frequency. Results show that the transmitted parameters in aluminum keep their continuity and coherency from microwave to terahertz frequency. RCS (radar cross-section) results of aluminum plates computed by IBC method demonstrate that the increased wave impedance of aluminous targets has little impact on its backscattering, and the polished aluminous plate or sphere can still be treated as a perfect electrical conductor and used as a reference for RCS calibration.
    • 基金项目: 国家自然科学基金青年科学基金(批准号:61302148,61101182)和湖南省自然科学基金杰出青年科学基金(批准号:11JJ1010)资助的课题.
    • Funds: Project supported by the National Science Fund for Young Scientists of China (Grant Nos. 61302148, 61101182), and the Science Foundation for Distinguished Young Scholars of Hunan Province, China (Grant No.11JJ1010).
    [1]

    Liu H B, Zhong H, Karpowicz N, Chen Y, Zhang X 2007 Proc. IEEE 95 1514

    [2]

    Cooper K B, Dengler R J, Llombart N, Thomas B, Chattopadhyay G, Siegel P H 2011 IEEE Trans. THz Sci. Technol. 1 169

    [3]

    Li Z, Cui T J, Zhong X J, Tao Y B, Lin H 2009 IEEE Antennas Propag. Mag. 51 39

    [4]

    Zhong X J, Cui T J, Li Z, Tao Y B, Lin H 2007 J. Electromagn Waves and Appl. 21 2331

    [5]

    Yang Y, Yao J Q, Zhang J S, Wang L 2013 J. Infrared. Millim. Waves 32 36 (in Chinese) [杨洋, 姚建铨, 张镜水, 王力 2013 红外与毫米波学报 32 36]

    [6]

    Zurk L M, Orlowski B, Sundberg G, Winebrenner D P, Thorsos E I, Chen A 2007 Proc. SPIE San Jose, CA, United states, January 21-22, 2007 p64720A

    [7]

    Yang Y, Jing L 2013 Laser & Infrared 43 155 (in Chinese) [杨洋, 景磊 2013 激光与红外 43 155]

    [8]

    Zhang Y P, Zhang H Y, Geng Y F, Tan X L, Yao J Q 2009 Acta Phys. Sin. 58 7030 (in Chinese)[张玉萍, 张会云, 耿优福, 谭晓玲, 姚建铨 2009 物理学报 58 7030]

    [9]

    Wu L, Ling F R, Zuo Z G, Liu JS, Yao J Q 2012 Chin. Phys. B 21 017802

    [10]

    Wu L, Jiang L K, Yuan C, Ding X, Yao J Q 2014 Chin. Phys. B 23 034212

    [11]

    Mayank K, Brian W H, Bernd M F, Derek A 2012 Appl. Phys. Lett. 100 011107

    [12]

    Yang Y P, Feng S, Feng H, Pan X C, Wang Y Q, Wang W Z 2011 Acta Phys. Sin. 60 027802 (in Chinese)[杨玉平, 冯帅, 冯辉, 潘学聪, 王艺全, 王文忠 2011 物理学报 60 027802]

    [13]

    Zhang H Y, Liu M, Yin Y H, Wu Z X, Shen R L, Zhang Y P 2013 Acta Phys. Sin. 62 194207 (in Chinese)[张会云, 刘蒙, 尹贻恒, 吴志心, 申瑞龙, 张玉萍 2013 物理学报 62 194207]

    [14]

    Schulz L G, Tangherlini F R 1954 J. Opt. Soc. Am. 44 362

    [15]

    Shiles E, Sasaki T, Inokuti M, Smith D Y 1980 Phys. Rev. B 22 1612

    [16]

    Ordal M A, Bell R J, Alexander R W, Long L L 1985 Appl. Opt. 24 4493

    [17]

    Yasuda H, Hosako I 2008 Jpn. J. Appl. Phys. 47 1632

    [18]

    Ma Y F, Su P J, Gong X Q, Yang J, Du Y L, Guo T M, Yuan B 2011 Chin. Phys. Lett. 28 97803

    [19]

    Sun W F, Wang X K, Zhang Y 2009 Chin. Phys. Lett. 26 114210

    [20]

    Lloyd-Hughes J, Jeon T 2012 J. Infrared Milli Terahz Waves 33 871

    [21]

    Laman N, Grischkowsky D 2007 Appl. Phys. Lett. 90 122115

    [22]

    Laman N, Grischkowsky D 2008 Appl. Phys. Lett. 93 051105

    [23]

    Luo Y, Fernandez-Dominguez A I, Wiener A, Maier S A, Pendry J B 2013 Phys. Rev. Lett. 111 093901

    [24]

    Ordal M A, Bel R J, Alexander R W, Newquist L A, Querry M R 1988 Appl. Opt. 27 1203

    [25]

    Rakic A D 1995 Appl. Opt. 34 4755

    [26]

    Lucyszyn S 2004 IEE Proc. Microw., Antennas and Propag. 151 321

    [27]

    Lucyszyn S, Zhou Y 2010 Prog. Electromagn. Res. pier- 101 257

    [28]

    David R L 2000 CRC Handbook of Chemistry & Physics (Version 2000) (F L, USA: CRC Press)

    [29]

    Jackson J D 1999 Classical Electrodynamics (3rd Ed.) (N J, USA: John Wileys & Sons)

    [30]

    Markovic M I, Rakic A D 1990 Appl. Opt. 29 3479

    [31]

    Fang J X, Yin Z W 2000 Dielectric Physics (Beijing: Science Press) p24 (in Chinese) [方俊鑫, 殷之文2000电介质物理学(北京: 科学出版社)第24页]

    [32]

    Zhang K Q, Li D J 2001 Electromagnetic Theory for Microwaves and Optoelectronics (2rd Version) (Beijing: Publishing House of Electronics Industry) (in Chinese) [张克潜, 李德杰2001 微波与光电子学中的电磁理论(第二版) (北京: 电子工业出版社)]

    [33]

    Fox M 2001 Optical Properties of Solids (London U K: Oxford University Press) p149

    [34]

    Bondeson A, Rylander T, Ingelstrom P 2005 Computational Electromagnetics (Berlin Germany: Springer) p153

  • [1]

    Liu H B, Zhong H, Karpowicz N, Chen Y, Zhang X 2007 Proc. IEEE 95 1514

    [2]

    Cooper K B, Dengler R J, Llombart N, Thomas B, Chattopadhyay G, Siegel P H 2011 IEEE Trans. THz Sci. Technol. 1 169

    [3]

    Li Z, Cui T J, Zhong X J, Tao Y B, Lin H 2009 IEEE Antennas Propag. Mag. 51 39

    [4]

    Zhong X J, Cui T J, Li Z, Tao Y B, Lin H 2007 J. Electromagn Waves and Appl. 21 2331

    [5]

    Yang Y, Yao J Q, Zhang J S, Wang L 2013 J. Infrared. Millim. Waves 32 36 (in Chinese) [杨洋, 姚建铨, 张镜水, 王力 2013 红外与毫米波学报 32 36]

    [6]

    Zurk L M, Orlowski B, Sundberg G, Winebrenner D P, Thorsos E I, Chen A 2007 Proc. SPIE San Jose, CA, United states, January 21-22, 2007 p64720A

    [7]

    Yang Y, Jing L 2013 Laser & Infrared 43 155 (in Chinese) [杨洋, 景磊 2013 激光与红外 43 155]

    [8]

    Zhang Y P, Zhang H Y, Geng Y F, Tan X L, Yao J Q 2009 Acta Phys. Sin. 58 7030 (in Chinese)[张玉萍, 张会云, 耿优福, 谭晓玲, 姚建铨 2009 物理学报 58 7030]

    [9]

    Wu L, Ling F R, Zuo Z G, Liu JS, Yao J Q 2012 Chin. Phys. B 21 017802

    [10]

    Wu L, Jiang L K, Yuan C, Ding X, Yao J Q 2014 Chin. Phys. B 23 034212

    [11]

    Mayank K, Brian W H, Bernd M F, Derek A 2012 Appl. Phys. Lett. 100 011107

    [12]

    Yang Y P, Feng S, Feng H, Pan X C, Wang Y Q, Wang W Z 2011 Acta Phys. Sin. 60 027802 (in Chinese)[杨玉平, 冯帅, 冯辉, 潘学聪, 王艺全, 王文忠 2011 物理学报 60 027802]

    [13]

    Zhang H Y, Liu M, Yin Y H, Wu Z X, Shen R L, Zhang Y P 2013 Acta Phys. Sin. 62 194207 (in Chinese)[张会云, 刘蒙, 尹贻恒, 吴志心, 申瑞龙, 张玉萍 2013 物理学报 62 194207]

    [14]

    Schulz L G, Tangherlini F R 1954 J. Opt. Soc. Am. 44 362

    [15]

    Shiles E, Sasaki T, Inokuti M, Smith D Y 1980 Phys. Rev. B 22 1612

    [16]

    Ordal M A, Bell R J, Alexander R W, Long L L 1985 Appl. Opt. 24 4493

    [17]

    Yasuda H, Hosako I 2008 Jpn. J. Appl. Phys. 47 1632

    [18]

    Ma Y F, Su P J, Gong X Q, Yang J, Du Y L, Guo T M, Yuan B 2011 Chin. Phys. Lett. 28 97803

    [19]

    Sun W F, Wang X K, Zhang Y 2009 Chin. Phys. Lett. 26 114210

    [20]

    Lloyd-Hughes J, Jeon T 2012 J. Infrared Milli Terahz Waves 33 871

    [21]

    Laman N, Grischkowsky D 2007 Appl. Phys. Lett. 90 122115

    [22]

    Laman N, Grischkowsky D 2008 Appl. Phys. Lett. 93 051105

    [23]

    Luo Y, Fernandez-Dominguez A I, Wiener A, Maier S A, Pendry J B 2013 Phys. Rev. Lett. 111 093901

    [24]

    Ordal M A, Bel R J, Alexander R W, Newquist L A, Querry M R 1988 Appl. Opt. 27 1203

    [25]

    Rakic A D 1995 Appl. Opt. 34 4755

    [26]

    Lucyszyn S 2004 IEE Proc. Microw., Antennas and Propag. 151 321

    [27]

    Lucyszyn S, Zhou Y 2010 Prog. Electromagn. Res. pier- 101 257

    [28]

    David R L 2000 CRC Handbook of Chemistry & Physics (Version 2000) (F L, USA: CRC Press)

    [29]

    Jackson J D 1999 Classical Electrodynamics (3rd Ed.) (N J, USA: John Wileys & Sons)

    [30]

    Markovic M I, Rakic A D 1990 Appl. Opt. 29 3479

    [31]

    Fang J X, Yin Z W 2000 Dielectric Physics (Beijing: Science Press) p24 (in Chinese) [方俊鑫, 殷之文2000电介质物理学(北京: 科学出版社)第24页]

    [32]

    Zhang K Q, Li D J 2001 Electromagnetic Theory for Microwaves and Optoelectronics (2rd Version) (Beijing: Publishing House of Electronics Industry) (in Chinese) [张克潜, 李德杰2001 微波与光电子学中的电磁理论(第二版) (北京: 电子工业出版社)]

    [33]

    Fox M 2001 Optical Properties of Solids (London U K: Oxford University Press) p149

    [34]

    Bondeson A, Rylander T, Ingelstrom P 2005 Computational Electromagnetics (Berlin Germany: Springer) p153

  • [1] 张旭涛, 阙肖峰, 蔡禾, 孙金海, 张景, 李粮生, 刘永强. 太赫兹雷达散射截面的仿真与时域光谱测量. 物理学报, 2019, 68(16): 168701. doi: 10.7498/aps.68.20190552
    [2] 张银, 冯一军, 姜田, 曹杰, 赵俊明, 朱博. 基于石墨烯的太赫兹波散射可调谐超表面. 物理学报, 2017, 66(20): 204101. doi: 10.7498/aps.66.204101
    [3] 李文强, 曹祥玉, 高军, 赵一, 杨欢欢, 刘涛. 基于超材料吸波体的低雷达散射截面波导缝隙阵列天线. 物理学报, 2015, 64(9): 094102. doi: 10.7498/aps.64.094102
    [4] 丛丽丽, 付强, 曹祥玉, 高军, 宋涛, 李文强, 赵一, 郑月军. 一种高增益低雷达散射截面的新型圆极化微带天线设计. 物理学报, 2015, 64(22): 224219. doi: 10.7498/aps.64.224219
    [5] 李文强, 曹祥玉, 高军, 郑月军, 杨欢欢, 李思佳, 赵一. 共享孔径人工电磁媒质设计及其在高增益低雷达散射截面天线中的应用. 物理学报, 2015, 64(5): 054101. doi: 10.7498/aps.64.054101
    [6] 江月松, 聂梦瑶, 张崇辉, 辛灿伟, 华厚强. 粗糙表面涂覆目标的太赫兹波散射特性研究. 物理学报, 2015, 64(2): 024101. doi: 10.7498/aps.64.024101
    [7] 闫昕, 梁兰菊, 张雅婷, 丁欣, 姚建铨. 基于编码超表面的太赫兹宽频段雷达散射截面缩减的研究. 物理学报, 2015, 64(15): 158101. doi: 10.7498/aps.64.158101
    [8] 何晶, 苗强, 吴德伟. 微波-光波变电长度缩比条件下目标雷达散射截面相似性研究. 物理学报, 2014, 63(20): 200301. doi: 10.7498/aps.63.200301
    [9] 李勇峰, 张介秋, 屈绍波, 王甲富, 陈红雅, 徐卓, 张安学. 宽频带雷达散射截面缩减相位梯度超表面的设计及实验验证. 物理学报, 2014, 63(8): 084103. doi: 10.7498/aps.63.084103
    [10] 朱艳菊, 江月松, 华厚强, 张崇辉, 辛灿伟. 热防护层覆盖弹体目标雷达散射截面的修正的等效电流近似法和图形计算电磁学法分析. 物理学报, 2014, 63(24): 244101. doi: 10.7498/aps.63.244101
    [11] 梁达川, 魏明贵, 谷建强, 尹治平, 欧阳春梅, 田震, 何明霞, 韩家广, 张伟力. 缩比模型的宽频时域太赫兹雷达散射截面(RCS)研究. 物理学报, 2014, 63(21): 214102. doi: 10.7498/aps.63.214102
    [12] 杨欢欢, 曹祥玉, 高军, 刘涛, 李思佳, 赵一, 袁子东, 张浩. 基于电磁谐振分离的宽带低雷达截面超材料吸波体. 物理学报, 2013, 62(21): 214101. doi: 10.7498/aps.62.214101
    [13] 李思佳, 曹祥玉, 高军, 刘涛, 杨欢欢, 李文强. 宽带超薄完美吸波体设计及在圆极化倾斜波束天线雷达散射截面缩减中的应用研究. 物理学报, 2013, 62(12): 124101. doi: 10.7498/aps.62.124101
    [14] 杨欢欢, 曹祥玉, 高军, 刘涛, 马嘉俊, 姚旭, 李文强. 基于超材料吸波体的低雷达散射截面微带天线设计. 物理学报, 2013, 62(6): 064103. doi: 10.7498/aps.62.064103
    [15] 王飞, 魏兵. 电各向异性色散介质电磁散射时域有限差分分析的半解析递推卷积方法. 物理学报, 2013, 62(4): 044101. doi: 10.7498/aps.62.044101
    [16] 李思佳, 曹祥玉, 高军, 郑秋容, 赵一, 杨群. 低雷达散射截面的超薄宽带完美吸波屏设计研究. 物理学报, 2013, 62(19): 194101. doi: 10.7498/aps.62.194101
    [17] 张宇, 杨曦, 苟铭江, 史庆藩. 电磁散射问题的两种反演方法研究. 物理学报, 2010, 59(6): 3905-3911. doi: 10.7498/aps.59.3905
    [18] 杨利霞, 葛德彪, 魏 兵. 电各向异性色散介质电磁散射的三维递推卷积-时域有限差分方法分析. 物理学报, 2007, 56(8): 4509-4514. doi: 10.7498/aps.56.4509
    [19] 李民权, 陶小俊, 赵 瑾, 吴先良. 基于辛Runge-Kutta-Nystrom方法的雷达散射截面计算. 物理学报, 2007, 56(4): 2115-2118. doi: 10.7498/aps.56.2115
    [20] 刘少斌, 张光甫, 袁乃昌. 等离子体覆盖立方散射体目标雷达散射截面的时域有限差分法分析. 物理学报, 2004, 53(8): 2633-2637. doi: 10.7498/aps.53.2633
计量
  • 文章访问数:  3674
  • PDF下载量:  1034
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-11-18
  • 修回日期:  2014-03-25
  • 刊出日期:  2014-07-05

太赫兹与远红外频段下铝质目标电磁特性与计算

  • 1. 国防科技大学电子科学与工程学院, 长沙 410073;
  • 2. 空军95876部队, 张掖 734100
    基金项目: 国家自然科学基金青年科学基金(批准号:61302148,61101182)和湖南省自然科学基金杰出青年科学基金(批准号:11JJ1010)资助的课题.

摘要: 在太赫兹与远红外频段,铝处于由导体到介质的过渡,研究该频段铝质目标与电磁波的相互作用机理对于实现太赫兹频段目标精确电磁散射计算具有重要意义. 基于实验测量数据,设计有效误差准则模型拟合得到了太赫兹与远红外频段铝的介电系数模型;基于拟合模型通过推导过渡阶段不同损耗机理下铝中传播电磁波的空间相位系数与铝的波阻抗等参数,分析了太赫兹与远红外频段电磁波在铝中的透射与反射特性,给出了铝的反射率关于频率的变化曲线. 结果表明铝中电磁波传播参数从微波向太赫兹频段过渡时具有很好的连续性与一致性;基于阻抗边界条件的雷达散射截面计算结果表明太赫兹频段光滑铝质目标可视做理想导体进行计算,太赫兹雷达散射截面测量中可利用光滑铝板或铝球做为定标体.

English Abstract

参考文献 (34)

目录

    /

    返回文章
    返回