搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氧化物玻璃中的类分子结构单元

万法琦 马艳平 董丹丹 丁万昱 姜宏 董闯 贺建雄

引用本文:
Citation:

氧化物玻璃中的类分子结构单元

万法琦, 马艳平, 董丹丹, 丁万昱, 姜宏, 董闯, 贺建雄

Molecule-like structural units in silicate-glass-forming oxides

Wan Fa-Qi, Ma Yan-Ping, Dong Dan-Dan, Ding Wan-Yu, Jiang Hong, Dong Chuang, He Jian-Xiong
PDF
HTML
导出引用
  • 本文引入团簇加连接原子模型来解析硅酸盐玻璃相关氧化物的结构, 并给出了这些氧化物的最小结构单元——类分子结构单元. 参与网络形成体的氧化物主要以三角形或者四面体的配位体形式存在, 构建玻璃的三维网络状骨架. 如基础的网络形成体SiO2, 其类分子结构单元团簇式是为[Si-O4]Si, 含有的价电子数为32, 形成四面体网络. 中间体以同时形成八面体和四面体为特征, 网络外体则以立方体和八面体为主. 经证实, 这些类分子结构单元无一例外, 均满足八电子规则(即每个结构单元所含的价电子总数为8的整数倍), 具有分子的属性. 玻璃中氧化物类分子结构单元概念的提出, 将为后续的玻璃成分设计工作打下基础.
    Silica glasses are composed of multi-oxides, apart from the major component silica. Though it is a general practice in the industries to prepare glasses at specific oxide ratios, the composition rule is largely missing, complicated by the implication of multi-oxides. Necessarily, their interpretation is rooted in chemical units, on which the specific compositions depend. However, in silica glasses the inter-atomic bonding network is continuous and there is no weak bonds, like the inter-molecular ones in molecular compounds, to define molecular entities that carry the chemical information of the materials. As the first stage towards understanding the composition rule, the present paper introduces a new method, so-called the cluster-plus-glue-atom model, to unveil the molecule-like structural units of the glass-relevant oxides. It is pointed out that their respective contributions to the construction of glass networks originate from their characteristic cluster structures, and from which molecule-like structural units are proposed that represent the smallest structural units of these oxides. Oxides participating in the glass network formation mainly present triangular or tetrahedral clusters which are required for a three-dimensional glassy network. For example, the basic network former SiO2 is formulated as [Si-O4]Si and contains 32 valence electrons. The intermediate oxides are characterized by the simultaneous formation of both octahedra and tetrahedra. The network modifiers present mainly cubes and octahedra. It is confirmed that the molecule-like structural units of the glass-formation oxides all meet octet rule (that is, the total number of valence electrons contained in each structural unit is an integer multiple of 8), just like common molecules. The proposed concept of molecular structural units sheds a new light on understanding the composition rule of silicate glasses and can eventually solve the long-standing problem of composition design of silica glasses.
      通信作者: 马艳平, myp@hainanu.edu.cn ; 姜宏, jhong63908889@sina.com
    • 基金项目: 省部级-海南省重大科技计划项目(No.ZDKJ2017011)
      Corresponding author: Ma Yan-Ping, myp@hainanu.edu.cn ; Jiang Hong, jhong63908889@sina.com
    [1]

    王建成 2015 中国工业评论 0 4

    Wang J C 2015 China Industry Review 0 4

    [2]

    马艳平 2019 博士学位论文 (大连: 大连理工大学)

    Ma Y P 2019 Ph. D. Dissertation (Dalian: Dalian University of Technology) (in Chinese)

    [3]

    Ma Y P, Dong D D, Wu A M, Dong C 2018 Inorg. Chem. 57 710Google Scholar

    [4]

    Nuernberg F, Kuehn B, Rollmann K Metrology of Fused Silica Laser-Induced Damage in Optical Materials Boulder, Colorado, United States, September 25 2016, p10014

    [5]

    Salmon P S 2002 Nat. Mater. 1 7Google Scholar

    [6]

    Elliot S R 1984 Physics of Amorphous Materials (London: Longman) pp20–27

    [7]

    Scholze H 1992 Appl. Opt. 31 31

    [8]

    Dong C, Wang Z J, Zhang S, Wang Y M 2020 Int. Mater. Rev. 65 286Google Scholar

    [9]

    董闯, 董丹丹, 王清 2018 金属学报 54 293Google Scholar

    Dong C, Dong D D, Wang Q 2018 Acta Mater 54 293Google Scholar

    [10]

    Dong C, Wang Q, Qiang J B, Wang Y M, Jiang N, Han G, Li Y H, Wu J, Xia J H 2007 Phys. D: Appl. Phys. 40 273Google Scholar

    [11]

    Han G, Qian J, Li F, Yuan L, Quan S G, Wang Q, Wang Y M, Dong C, Peter Häusslerl 2011 Acta. Mater. 59 5917Google Scholar

    [12]

    Du J, We B, Melnik R, Yoshiyuki K 2014 Acta. Mater. 75 113Google Scholar

    [13]

    Chen J X, Wang Q, Wang Y M, Qiang J B, Dong C 2010 Phil. Mag. Lett. 90 683Google Scholar

    [14]

    Dong D D, Zhang S, Wang Z J, Dong C, Häusslerl P 2016 Mater. Des. 96 115Google Scholar

    [15]

    董丹丹 2017 博士学位论文 (大连: 大连理工大学)

    Dong D D 2017 Ph. D. Dissertation (Dalian: Dalian University of Technology) (in Chinese)

    [16]

    张爽 2019 博士学位论文 (大连: 大连理工大学)

    Zhang S 2019 Ph. D. Dissertation (Dalian: Dalian University of technology) (in Chinese)

    [17]

    Lewis G N 1916 J. Am. Chem. Soc. 38 762Google Scholar

    [18]

    Miracle D, Sanders W, Senkov O N 2003 Philos. Mag. 83 2409Google Scholar

    [19]

    Villars P, Calvert L D 1985 Pearson’s Handbook of Crystallographic Data For Intermetallic Phases (Ohio, USA: American Society for Metals) pp2579−2580

    [20]

    周艳艳, 张希艳 2014 玻璃化学) (北京: 化学工业出版社) 第220−225页

    Zhou Y Y, Zhang X Y 2014 Glass Chemistry (Beijing: Chemical Industry Press) pp220−225

    [21]

    田英良, 孙诗兵 2009 新编玻璃工艺学 (北京: 中国轻工业出版社) 第25—30页

    TianY L, Sun S B 2009 New Glass Technology (Version 1) (Beijing: China Light Industry Press) pp25–30

    [22]

    Özgür Ü, Alivov Y I, Liu C, Teke A, Reshchikov M A, Doğan S, Avrutin V, Chong S J, Morkoç H 2005 Appl. Phys. 98 041301Google Scholar

    [23]

    余小红 2015 博士学位论文 (武汉: 中国地质大学)

    Yu X H 2015 Ph. D. Dissertation (Wuhan: China University of Geosciences) (in Chinese)

    [24]

    戴培赞, 戚凭, 姜富城, 鲁萌萌 2006 青岛大学学报 19 22

    Dai P Z, Qi P, Jiang F C, Lu M M 2006 Journal of Qingdao University 19 22

    [25]

    Hazen R M, Finger L W 1986 J. Appl. Phys. 59 372 8

    [26]

    Boettger J C, Wills J M 1996 Phys. Rev. B 54 8965Google Scholar

  • 图 1  水分子的电子结构[2]

    Fig. 1.  Electron structure of water molecule[2].

    图 2  基于[Si-O4]四面体的鳞石英β-SiO2晶体结构[3]

    Fig. 2.  Crystal structure of β-SiO2 using tetrahedral cluster [Si-O4][3].

    图 3  氧化硅玻璃的结构示意图, 显示了长程无序和近程有序(硅氧四面体)特征[4]

    Fig. 3.  The amorphous structure of glassy silica (SiO2) in two dimensions[4]

    图 4  (a) 团簇加连接原子模型[11]; (b) 团簇的间距为r3

    Fig. 4.  (a) Cluster-plus-glue-atom model[11]; (b) the inter-cluster distance is r3.

    图 5  (a) β-SiO2(SiO2结构, 空间群194)的主团簇[Si-O4]和[O-Si2], 大原子为O, 小原子为Si; (b)类分子结构单元[Si-O4]Si

    Fig. 5.  (a)Principal cluster [Si-O4] and [O-Si2] in β-SiO2 structure (space group 194). Large and small spheres are O and Si atoms, respectively; (b) molecule-like structural unit[Si-O4]Si.

    图 6  氧化物的单胞结构, 大原子为O: (a) B2O3(P31); (b) B2O3(Cmc21); (c) GeO2(P41212); (d) P2O5(Pnma)

    Fig. 6.  The cell structure of oxides, and large atoms are O: (a) B2O3(P31); (b) B2O3(Cmc21); (c) GeO2(P41212); (d) P2O5(Pnma).

    图 7  反萤石结构Li2O的团簇[Li-O4]与[O-Li8], 后者为主团簇. 大原子为O, 小原子为Li

    Fig. 7.  Clusters in anti-fluorite Li2O, [Li-O4] and [O-Li8] (principal cluster). Large spheres represent O and small spheres represent Li.

    图 8  NaCl结构CaO的团簇[Ca-O6]与[O-Ca6], 前者为主团簇. 大原子为O, 小原子为Ca

    Fig. 8.  Clusters in NaCl structure of Li2O, [Ca-O6] (principal cluster)and [O-Ca6]. Large spheres represent O and small spheres represent Li.

    图 9  α-Al2O3中的团簇: 四面体[O-Al4]与八面体[Al-O6](主团簇), 小原子为Al

    Fig. 9.  Clusters in α-Al2O3 unit cell, including [O-Al4] and [Al-O6] (principal cluster). Small spheres represent Al.

    图 10  γ-Al2O3(Al2MgO4尖晶石结构)中的团簇, 含有两种四面体[O-Al4]和[Al-O4](主团簇)与一种八面体[Al-O6], 小原子为Al

    Fig. 10.  Clusters in γ-Al2O3 (Al2MgO4 structure), including [O-Al4], [Al-O4] (principal cluster), and [Al-O6]. Small spheres represent Al.

    图 11  ZnO的单胞结构, 小原子为Zn (a) ZnO ($ F{\bar 4}3 m$); (b) ZnO (P63mc)

    Fig. 11.  The cell structure of ZnO, and small spheres represent Ti: (a) ZnO ($ F{\bar 4}3 m$); (b) ZnO (P63mc).

    图 12  ZnO(NaCl结构)中的八面体团簇[Zn-O6]与[O-Zn6], 前者为主团簇. 小原子为Zn

    Fig. 12.  Octahedral clusters [Zn-O6] (principal cluster) and [O-Zn6] in ZnO (NaCl structure). Small spheres represent Zn.

    图 13  TiO2的单胞结构, 小原子为Ti (a) TiO2(P42/mnm); (b) TiO2(I41/amd); (c) TiO2( Pbca); (d) TiO2 (P21/m)

    Fig. 13.  The cell structure of TiO2, and small spheres represent are Ti: (a) TiO2(P42/mnm); (b) TiO2(I41/amd); (c) TiO2( Pbca); (d) TiO2 (P21/m)

    表 1  鳞石英(Tridymite)β-SiO2的晶体结构数据表[19]

    Table 1.  Crystal structure data of Tridymite β-SiO2[19].

    O2SiStructure type O2SiPearson symbol hP12Space group P63/mmcNo.194
    a = 0.5052(9) nmc = 0.827(2) nmγ = 120°
    O12c$ {\bar 6}m2$x = 1/3y = 2/3z = 1/4occ. = 1
    Si4f3m.x = 1/3y = 2/3z = 0.0620occ. = 1
    O26g.2/mx = 1/2y = 0z = 0occ. = 1
    下载: 导出CSV

    表 2  硅酸盐玻璃相关氧化物的类分子结构单元, 分为中心为阳离子和阴离子O两种; 依托于主团簇的类分子结构单元用黑体标出

    Table 2.  Molecule-like structural units of glass-relevant oxides. Molecule-like structural unit, based on principal clusters, are bolded.

    ClassificationOxide (space group)Cationic structural unit (e/u)Anion structural unit (e/u)
    Network formationβ-SiO2 (P63/mmc)[Si-O4]Si = 2{SiO2} (32)[O-Si2]O3= 2{SiO2} (32)
    B2O3 (P31)[B-O3]B = {B2O3} (24)[O-B2]O2 = {B2O3} (24)
    B2O3 (Cmc21)[B-O4]B3O2 = 2{B2O3} (48)[O-B2]O2 = {B2O3} (24)
    [O-B3]O5B1 = 2{B2O3} (48)
    GeO2 (P41212)[Ge-O4]Ge = 2{GeO2} (32)[O-Ge2]O3 = 2{GeO2} (32)
    P2O5 (Pnma)[P-O4]P1O1 = {P2O5} (40)[O-P2]O4 = {P2O5} (40)
    [O-P1]P1O4 = {P2O5} (40)
    Network outside body(Li, Na, K)2O
    (anti-fluorite$ Fm{\bar 3}m$)
    [(Li, Na, K)-O4](Li, Na, K)7 =
    4{(Li, Na, K)O2} (32)
    [O-(Li, Na, K)8]O3 =
    4{(Li, Na, K)O2} (32)
    (Mg, Ca, Ba)O
    (Halite, $ Fm{\bar 3}m$)
    [(Mg, Ca, Ba)-O6](Mg, Ca, Ba)5 =
    6{(Mg, Ca, Ba)O} (48)
    [O-(Mg, Ca, Ba)6]O5 =
    4{(Mg, Ca, Ba)O} (48)
    ZrO2 (rutile, P42/mnm)[Zr-O6]Zr2 = 3{ZrO2} (48)[O-Zr3]O5 = 3{ZrO2} (48)
    Network intermediate(Be, Zn)O
    (sphalerite, P43m)
    [(Be, Zn)-O4](Be, Zn)3 = 4{(Be, Zn)O} (32)[O-(Be, Zn)4]O3 = 4{(Be, Zn)O} (32)
    (Be, Zn)O
    (Wurtzite, P63mc)
    [Zn-O4]Zn3 = 4{ZnO} (32)[O-Zn4]O3 = 4{ZnO} (32)
    (Be, Zn)O
    (Halite, $ Fm{\bar 3}m$)
    [Zn-O6]Zn5 = 6{ZnO} (48)[O-Zn6]O5 = 6{ZnO} (48)
    α-Al2O3 ($ R{\bar 3}c$)[Al-O6]Al3 = 2{Al2O3} (48)[O-Al4]O5 = 2{Al2O3} (48)
    γ-Al2O3 (Spinel, $ Fd{\bar 3}m$)[Al-O4]O2Al3 = 2{Al2O3} (48)[O-Al4]O5 = 2{Al2O3} (48)
    [Al-O6]Al3 = 2{Al2O3} (48)
    Ga2O3 (α-Al2O3, $ R{\bar 3}c$)[Ga-O6]Ga3 = 2{Ga2O3} (48)[O-Ga4]O5 = 2{Ga2O3} (48)
    Ga2O3 (Spinel, $ Fd{\bar 3}m$)[Ga-O4]O2Ga3 = 2{Ga2O3} (48)[O-Ga4]O5 = 2{Ga2O3} (48)
    [Ga-O6]Ga3 = 2{Ga2O3} (48)
    Fe2O3 (α-Al2O3, $ R{\bar 3}c$)[Fe-O6]Fe3 = 2{Fe2O3} (48)[O-Fe4]O5 = 2{Fe2O3} (48)
    Fe3O4 (Spinel, $ Fd{\bar 3}m$)[Fe-O4]Fe2 = {Fe3O4} (32)[O-Fe4]O7Fe2 = 2{Fe3O4} (64)
    [Fe-O6]Fe5O2 = 2{Fe3O4} (64)
    TiO2 (Rutile, P42/mnm)[Ti-O6]Ti2 = 3{TiO2} (48)[O-Ti3]O5 = 3{TiO2} (48)
    TiO2 (Anatase, I41/amd)[Ti-O6]Ti2 = 3{TiO2} (48)[O-Ti3]O5 = 3{TiO2} (48)
    TiO2 (Brookite, Pbca)[Ti-O6]Ti2 = 3{TiO2} (48)[O-Ti3]O5 = 3{TiO2} (48)
    TiO2 (P21/m)[Ti-O4]Ti = 2{TiO2} (32)[O-Ti2]O3 = 2{TiO2} (32)
    [Ti-O3]TiO = 2{TiO2} (32)[O-Ti]O3Ti = 2{TiO2} (32)
    下载: 导出CSV
  • [1]

    王建成 2015 中国工业评论 0 4

    Wang J C 2015 China Industry Review 0 4

    [2]

    马艳平 2019 博士学位论文 (大连: 大连理工大学)

    Ma Y P 2019 Ph. D. Dissertation (Dalian: Dalian University of Technology) (in Chinese)

    [3]

    Ma Y P, Dong D D, Wu A M, Dong C 2018 Inorg. Chem. 57 710Google Scholar

    [4]

    Nuernberg F, Kuehn B, Rollmann K Metrology of Fused Silica Laser-Induced Damage in Optical Materials Boulder, Colorado, United States, September 25 2016, p10014

    [5]

    Salmon P S 2002 Nat. Mater. 1 7Google Scholar

    [6]

    Elliot S R 1984 Physics of Amorphous Materials (London: Longman) pp20–27

    [7]

    Scholze H 1992 Appl. Opt. 31 31

    [8]

    Dong C, Wang Z J, Zhang S, Wang Y M 2020 Int. Mater. Rev. 65 286Google Scholar

    [9]

    董闯, 董丹丹, 王清 2018 金属学报 54 293Google Scholar

    Dong C, Dong D D, Wang Q 2018 Acta Mater 54 293Google Scholar

    [10]

    Dong C, Wang Q, Qiang J B, Wang Y M, Jiang N, Han G, Li Y H, Wu J, Xia J H 2007 Phys. D: Appl. Phys. 40 273Google Scholar

    [11]

    Han G, Qian J, Li F, Yuan L, Quan S G, Wang Q, Wang Y M, Dong C, Peter Häusslerl 2011 Acta. Mater. 59 5917Google Scholar

    [12]

    Du J, We B, Melnik R, Yoshiyuki K 2014 Acta. Mater. 75 113Google Scholar

    [13]

    Chen J X, Wang Q, Wang Y M, Qiang J B, Dong C 2010 Phil. Mag. Lett. 90 683Google Scholar

    [14]

    Dong D D, Zhang S, Wang Z J, Dong C, Häusslerl P 2016 Mater. Des. 96 115Google Scholar

    [15]

    董丹丹 2017 博士学位论文 (大连: 大连理工大学)

    Dong D D 2017 Ph. D. Dissertation (Dalian: Dalian University of Technology) (in Chinese)

    [16]

    张爽 2019 博士学位论文 (大连: 大连理工大学)

    Zhang S 2019 Ph. D. Dissertation (Dalian: Dalian University of technology) (in Chinese)

    [17]

    Lewis G N 1916 J. Am. Chem. Soc. 38 762Google Scholar

    [18]

    Miracle D, Sanders W, Senkov O N 2003 Philos. Mag. 83 2409Google Scholar

    [19]

    Villars P, Calvert L D 1985 Pearson’s Handbook of Crystallographic Data For Intermetallic Phases (Ohio, USA: American Society for Metals) pp2579−2580

    [20]

    周艳艳, 张希艳 2014 玻璃化学) (北京: 化学工业出版社) 第220−225页

    Zhou Y Y, Zhang X Y 2014 Glass Chemistry (Beijing: Chemical Industry Press) pp220−225

    [21]

    田英良, 孙诗兵 2009 新编玻璃工艺学 (北京: 中国轻工业出版社) 第25—30页

    TianY L, Sun S B 2009 New Glass Technology (Version 1) (Beijing: China Light Industry Press) pp25–30

    [22]

    Özgür Ü, Alivov Y I, Liu C, Teke A, Reshchikov M A, Doğan S, Avrutin V, Chong S J, Morkoç H 2005 Appl. Phys. 98 041301Google Scholar

    [23]

    余小红 2015 博士学位论文 (武汉: 中国地质大学)

    Yu X H 2015 Ph. D. Dissertation (Wuhan: China University of Geosciences) (in Chinese)

    [24]

    戴培赞, 戚凭, 姜富城, 鲁萌萌 2006 青岛大学学报 19 22

    Dai P Z, Qi P, Jiang F C, Lu M M 2006 Journal of Qingdao University 19 22

    [25]

    Hazen R M, Finger L W 1986 J. Appl. Phys. 59 372 8

    [26]

    Boettger J C, Wills J M 1996 Phys. Rev. B 54 8965Google Scholar

  • [1] 冉峰, 梁艳, 张坚地. 氧化物异质界面上的准二维超导. 物理学报, 2023, 72(9): 097401. doi: 10.7498/aps.72.20230044
    [2] 姜福仕, 王伟华, 李鸿明, 王清, 董闯. Ni-Al-Cr合金中团簇加连接原子模型的第一性原理计算. 物理学报, 2022, 71(20): 207101. doi: 10.7498/aps.71.20221036
    [3] 马启慧, 张宇, 王清, 董红刚, 董闯. Co-Al-W基高温合金的团簇成分式. 物理学报, 2019, 68(6): 062101. doi: 10.7498/aps.68.20181030
    [4] 刘益春, 林亚, 王中强, 徐海阳. 氧化物基忆阻型神经突触器件. 物理学报, 2019, 68(16): 168504. doi: 10.7498/aps.68.20191262
    [5] 袁伟, 彭海波, 杜鑫, 律鹏, 沈扬皓, 赵彦, 陈亮, 王铁山. 分子动力学模拟钠硼硅酸盐玻璃电子辐照诱导的结构演化效应. 物理学报, 2017, 66(10): 106102. doi: 10.7498/aps.66.106102
    [6] 王同, 胡小刚, 吴爱民, 林国强, 于学文, 董闯. 以团簇加连接原子模型解析Cr-C共晶成分. 物理学报, 2017, 66(9): 092101. doi: 10.7498/aps.66.092101
    [7] 熊中龙, 吴妍, 景锐平, 马冲, 龙蔚辉, 张超军, 程永进. 掺Yb硅酸盐玻璃的热漂白性能研究. 物理学报, 2016, 65(4): 044208. doi: 10.7498/aps.65.044208
    [8] 洪海莲, 董闯, 王清, 张宇, 耿遥祥. 面心立方固溶体合金的团簇加连接原子几何模型及典型工业合金成分解析. 物理学报, 2016, 65(3): 036101. doi: 10.7498/aps.65.036101
    [9] 李晓娜, 郑月红, 李震, 王苗, 张坤, 董闯. 基于团簇模型设计的Cu-Cu12-[Mx/(12+x)Ni12/(12+x)]5 (M=Si, Cr, Cr+Fe) 合金抗高温氧化研究. 物理学报, 2014, 63(2): 028102. doi: 10.7498/aps.63.028102
    [10] 刘敏, 余华, 张盼, 张铭, 刘艳, 赵丽娟. Al2O3对氟氧化物玻璃微结构和析晶的影响. 物理学报, 2012, 61(11): 118102. doi: 10.7498/aps.61.118102
    [11] 孙毅, 王春雷, 王洪超, 苏文斌, 刘剑, 彭华, 梅良模. 烧结温度对La0.1Sr0.9TiO3陶瓷热电性能的影响. 物理学报, 2012, 61(16): 167201. doi: 10.7498/aps.61.167201
    [12] 韩光, 羌建兵, 王清, 王英敏, 夏俊海, 朱春雷, 全世光, 董闯. 源于团簇-共振模型的理想金属玻璃电子化学势均衡. 物理学报, 2012, 61(3): 036402. doi: 10.7498/aps.61.036402
    [13] 郝传璞, 王清, 马仁涛, 王英敏, 羌建兵, 董闯. 体心立方固溶体合金中的团簇+连接原子结构模型. 物理学报, 2011, 60(11): 116101. doi: 10.7498/aps.60.116101
    [14] 陈军, 蒙大桥, 杜际广, 蒋刚, 高涛, 朱正和. 钚氧化物的分子结构和分子光谱研究. 物理学报, 2010, 59(3): 1658-1664. doi: 10.7498/aps.59.1658
    [15] 王兴军, 董斌, 周治平. Er硅酸盐化合物薄膜的相转变和光致发光特性研究. 物理学报, 2010, 59(5): 3554-3557. doi: 10.7498/aps.59.3554
    [16] 李善锋, 苗 壮, 彭 扬, 张庆瑜. 掺Yb硼硅酸盐玻璃的光学特性及其双光子合作上转换荧光. 物理学报, 2006, 55(8): 4315-4320. doi: 10.7498/aps.55.4315
    [17] 李善锋, 张庆瑜. Er/Yb共掺硅酸盐玻璃的光致发光. 物理学报, 2005, 54(11): 5462-5467. doi: 10.7498/aps.54.5462
    [18] 孟 婕, 赵丽娟, 余 华, 唐莉勤, 梁 沁, 禹宣伊, 唐柏权, 苏 静, 许京军. 微晶结构对氟氧化物玻璃陶瓷发光特性的影响. 物理学报, 2005, 54(3): 1442-1446. doi: 10.7498/aps.54.1442
    [19] 吴永全, 蒋国昌, 尤静林, 侯怀宇, 陈 辉. 硅酸盐熔体微结构单元的对称伸缩模的拉曼散射系数. 物理学报, 2005, 54(2): 961-966. doi: 10.7498/aps.54.961
    [20] 曾惠丹, 曲士良, 姜雄伟, 邱建荣, 朱从善, 干福熹. 飞秒激光作用下金掺杂硅酸盐玻璃的光致晶化研究. 物理学报, 2003, 52(10): 2525-2529. doi: 10.7498/aps.52.2525
计量
  • 文章访问数:  11847
  • PDF下载量:  149
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-15
  • 修回日期:  2020-05-13
  • 上网日期:  2020-05-09
  • 刊出日期:  2020-07-05

/

返回文章
返回