搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

L-天冬酰胺及其一水合物的太赫兹光谱研究

杨静琦 李绍限 赵红卫 张建兵 杨娜 荆丹丹 王晨阳 韩家广

引用本文:
Citation:

L-天冬酰胺及其一水合物的太赫兹光谱研究

杨静琦, 李绍限, 赵红卫, 张建兵, 杨娜, 荆丹丹, 王晨阳, 韩家广

Terahertz study of L-asparagine and its monohydrate

Yang Jing-Qi, Li Shao-Xian, Zhao Hong-Wei, Zhang Jian-Bing, Yang Na, Jing Dan-Dan, Wang Chen-Yang, Han Jia-Guang
PDF
导出引用
  • 本文利用太赫兹时域光谱技术测量了室温条件下无水L-天冬酰胺与L- 天冬酰胺一水合物的光谱特征,发现二者存在显著的差异,并利用太赫兹时域光谱技术实时检测L-天冬酰胺一水合物受热脱水的动态过程. 结果表明太赫兹波对晶体结构变化、含结晶水状况以及分子间弱相互作用敏感. 结合差示扫描量热法与热重分析联用、傅里叶变换红外光谱、粉末X射线衍射等多种技术分别从热学性质、分子振动等方面进行了表征,进一步确认了太赫兹实验结果的可靠性. 采用基于密度泛函理论(DFT)的第一性原理平面波赝势方法,结合广义梯度近似(GGA)下的PBE交换-关联泛函,对L-天冬酰胺一水合物进行模拟计算,对实验所得太赫兹光谱与分子结构以及相互作用间的关系进行了讨论分析.
    Low-frequency collective vibrational modes of biomolecules which often lie in terahertz (THz) band, make the terahertz time-domain spectroscopy (THz-TDS) an important technique for molecular identification and medicine quality inspection. Distinctive THz spectra between L-asparagine and its monohydrate were observed and the dehydration process of L-asparagine monohydrate was tracked by THz-TDS. Experiments indicate that THz wave is sensitive to phase transitions in crystals, dehydration process, and weak molecular interactions. Multi-techniques including differential scanning calorimetry and thermogravimetry, Fourier transform infrared spectroscopy, and powder X-ray diffraction are performed to investigate the thermodynamic properties, intermolecular and intramolecular vibrations, and molecular packing patterns of L-asparagine and its monohydrate. These measurements support the reliability of THz spectroscopy. To simulate and analyse the vibration modes of L-asparagine monohydrate, density functional theory calculations are performed using a Perdew Burke and Ernzerhof generalized gradient approach; the results agree well with the experimental observations.
    • 基金项目: 中国科学院知识创新工程重要方向性项目、国家重点基础研究发展计划(973计划)(批准号:2014CB3398,2010CB832903)和国家自然科学基金(批准号:10675157)资助的课题.
    • Funds: Project supported by the Main Direction Program of Knowledge Innovation of Chinese Academy of Sciences, the National Basic Research Program of China (Grant Nos. 2014CB3398, 2010CB832903), and the National Natural Science Foundation of China (Grant No. 10675157).
    [1]

    Qin J Y, Ying Y B, Xie L J 2013 Appl. Spectrosc. Rev. 48 439

    [2]

    Huang Y H, Hu M, He G H, Liu W L 2013 Key Engineering Materials Qingdao, People's Republic China, September 28-30, 2012 p640

    [3]

    Tian L, Zhao K, Zhou Q L, Shi Y L, Zhang C L 2012 Chin. Phys. Lett. 29 043901

    [4]

    Tian L, Zhou Q L, Zhao K, Shi Y L, Zhao D M, Zhao S Q, Zhao H, Bao R M, Zhu S M, Miao Q, Zhang C L 2011 Chin. Phys. B 20 010703

    [5]

    Zuo Z G, Wang P, Ling F R, Liu J S, Yao J Q 2013 Chin. Phys. B 22 097304

    [6]

    Chen S, Fan F, Chang S J, Miao Y P, Chen M, Li J N, Wang X H, Lin L 2014 Opt. Express 22 6313

    [7]

    Wang W N, Wang G, Zhang Y 2011 Chin. Phys. B 20 123301

    [8]

    Du S Q, Li H, Xie L, Chen L, Peng Y, Zhu Y M, Li H, Dong P, Wang J T 2012 Appl. Phys. Lett. 100 143702

    [9]

    Du Y, Xia Y, Zhang H L, Hong Z 2013 Spectrochim. Acta A 111 192

    [10]

    Zheng Z P, Fan W H, Li H, Tang J 2014 J. Mol. Spectrosc. 296 9

    [11]

    Wu H Q, Khan M 2012 J. Mol. Struct. 1020 112

    [12]

    Liu H B, Chen Y Q, Zhang X C 2007 J. Pharm. Sci. 96 927

    [13]

    Liu H B, Zhang X C 2006 Chem. Phys. Lett. 429 229

    [14]

    Hisazumi J, Suzuki T, Wakiyama N, Nakagami H, Terada K 2012 Chem. Pharm. Bull. 60 831

    [15]

    Li J, Wang Z Y, Yang X, Hu L, Liu Y W, Wang C X 2006 Thermochim. Acta 447 147

    [16]

    Nishizawa J, Tanno T, Yoshida T, Suto K 2007 Chem. Lett. 36 134

    [17]

    Hangyo M 2005 in Fundamentals and Applications of Terahertz Wave (Tokyo: Kogyo Chosakai Publishing) pp 307-307

    [18]

    Ma S H, Shi Y L, Xu X L, Yan W, Yang Y P, Wang L 2006 Acta Phys. Sin. 55 4091 (in Chinese)[马士华, 施宇蕾, 徐新龙, 严伟, 杨玉平, 汪力 2006 物理学报 55 4091]

    [19]

    Wang W N, Li H Q, Zhang Y, Zhang C L 2009 Acta Phys.-Chim. Sin. 25 2074 (in Chinese)[王卫宁, 李洪起, 张岩, 张存林 2009 物理化学学报 25 2074]

    [20]

    Yan H, Fan W H, Zheng Z P 2012 Opt. Commun. 285 1593

    [21]

    Wang X, Wang Q 2011 J. Phys.: Conf. Ser. 276 012224

    [22]

    King M D, Korter T M 2011 J. Phys. Chem. A 115 14391

    [23]

    Pellizzeri S, Smith T M, Delaney S P, Korter T M, Zubieta J 2014 J. Mol. Struct. 1058 265

    [24]

    King M D, Buchanan W D, Korter T M 2011 J. Pharm. Sci. 100 1116

    [25]

    Han J G, Zhang W L, Chen W, Thamizhmani L, Azad A K, Zhu Z Y 2006 J. Phys. Chem. B 110 1989

    [26]

    Clark S J, Segall M D, Pickard C J, Hasnip P J, Probert M J, Refson K, Payne M C 2005 Z. Kristall. 220 567

    [27]

    Ramanadham M, Sikka S K, Chidambaram R 1972 Acta Crystallogr. B 28 3000

    [28]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [29]

    Hamann D R, Schluter M, Chiang C 1979 Phys. Rev. Lett. 43 1494

    [30]

    Fischer T H, Almlof J 1992 J. Phys. Chem. 96 9768

    [31]

    Contineanu M, Neacsu A, Contineanu I, Perisanu S 2013 J. Radioanal. Nucl. Chem. 295 379

    [32]

    Jain D, Chandra L S S, Bharadwaj S, Anwar S, Ganesan V, Lalla N P, Awasthi A M, Nath R 2010 IEEE T. Dielect. El. In. 17 1128

    [33]

    Yamada K, Hashizume D, Shimizu T, Yokoyama S 2007 Acta Cryst. E 63 O3802

    [34]

    Gražulis S, Daškevič A, Merkys A, Chateigner D, Lutterotti L, Quirós M, Serebryanaya N R, Moeck P, Downs R T, Le Bail A 2012 Nucleic Acids Res. 40 D420

    [35]

    Moreno A J D, Freire P T C, Guedes I, Melo F E A, Mendes J, Sanjurjo J A 1999 Braz. J. Phys. 29 380

    [36]

    Casado J, LóPez Navarrete J T, Ramírez F J 1995 J. Raman Spectrosc. 26 1003

    [37]

    Matei A, Drichko N, Gompf B, Dressel M 2005 Chem. Phys. 316 61

    [38]

    Yogam F, Potheher I V, Jeyasekaran R, Vimalan M, Arockiaraj M A, Sagayaraj P 2013 J. Therm. Anal. Calorim. 114 1153

  • [1]

    Qin J Y, Ying Y B, Xie L J 2013 Appl. Spectrosc. Rev. 48 439

    [2]

    Huang Y H, Hu M, He G H, Liu W L 2013 Key Engineering Materials Qingdao, People's Republic China, September 28-30, 2012 p640

    [3]

    Tian L, Zhao K, Zhou Q L, Shi Y L, Zhang C L 2012 Chin. Phys. Lett. 29 043901

    [4]

    Tian L, Zhou Q L, Zhao K, Shi Y L, Zhao D M, Zhao S Q, Zhao H, Bao R M, Zhu S M, Miao Q, Zhang C L 2011 Chin. Phys. B 20 010703

    [5]

    Zuo Z G, Wang P, Ling F R, Liu J S, Yao J Q 2013 Chin. Phys. B 22 097304

    [6]

    Chen S, Fan F, Chang S J, Miao Y P, Chen M, Li J N, Wang X H, Lin L 2014 Opt. Express 22 6313

    [7]

    Wang W N, Wang G, Zhang Y 2011 Chin. Phys. B 20 123301

    [8]

    Du S Q, Li H, Xie L, Chen L, Peng Y, Zhu Y M, Li H, Dong P, Wang J T 2012 Appl. Phys. Lett. 100 143702

    [9]

    Du Y, Xia Y, Zhang H L, Hong Z 2013 Spectrochim. Acta A 111 192

    [10]

    Zheng Z P, Fan W H, Li H, Tang J 2014 J. Mol. Spectrosc. 296 9

    [11]

    Wu H Q, Khan M 2012 J. Mol. Struct. 1020 112

    [12]

    Liu H B, Chen Y Q, Zhang X C 2007 J. Pharm. Sci. 96 927

    [13]

    Liu H B, Zhang X C 2006 Chem. Phys. Lett. 429 229

    [14]

    Hisazumi J, Suzuki T, Wakiyama N, Nakagami H, Terada K 2012 Chem. Pharm. Bull. 60 831

    [15]

    Li J, Wang Z Y, Yang X, Hu L, Liu Y W, Wang C X 2006 Thermochim. Acta 447 147

    [16]

    Nishizawa J, Tanno T, Yoshida T, Suto K 2007 Chem. Lett. 36 134

    [17]

    Hangyo M 2005 in Fundamentals and Applications of Terahertz Wave (Tokyo: Kogyo Chosakai Publishing) pp 307-307

    [18]

    Ma S H, Shi Y L, Xu X L, Yan W, Yang Y P, Wang L 2006 Acta Phys. Sin. 55 4091 (in Chinese)[马士华, 施宇蕾, 徐新龙, 严伟, 杨玉平, 汪力 2006 物理学报 55 4091]

    [19]

    Wang W N, Li H Q, Zhang Y, Zhang C L 2009 Acta Phys.-Chim. Sin. 25 2074 (in Chinese)[王卫宁, 李洪起, 张岩, 张存林 2009 物理化学学报 25 2074]

    [20]

    Yan H, Fan W H, Zheng Z P 2012 Opt. Commun. 285 1593

    [21]

    Wang X, Wang Q 2011 J. Phys.: Conf. Ser. 276 012224

    [22]

    King M D, Korter T M 2011 J. Phys. Chem. A 115 14391

    [23]

    Pellizzeri S, Smith T M, Delaney S P, Korter T M, Zubieta J 2014 J. Mol. Struct. 1058 265

    [24]

    King M D, Buchanan W D, Korter T M 2011 J. Pharm. Sci. 100 1116

    [25]

    Han J G, Zhang W L, Chen W, Thamizhmani L, Azad A K, Zhu Z Y 2006 J. Phys. Chem. B 110 1989

    [26]

    Clark S J, Segall M D, Pickard C J, Hasnip P J, Probert M J, Refson K, Payne M C 2005 Z. Kristall. 220 567

    [27]

    Ramanadham M, Sikka S K, Chidambaram R 1972 Acta Crystallogr. B 28 3000

    [28]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [29]

    Hamann D R, Schluter M, Chiang C 1979 Phys. Rev. Lett. 43 1494

    [30]

    Fischer T H, Almlof J 1992 J. Phys. Chem. 96 9768

    [31]

    Contineanu M, Neacsu A, Contineanu I, Perisanu S 2013 J. Radioanal. Nucl. Chem. 295 379

    [32]

    Jain D, Chandra L S S, Bharadwaj S, Anwar S, Ganesan V, Lalla N P, Awasthi A M, Nath R 2010 IEEE T. Dielect. El. In. 17 1128

    [33]

    Yamada K, Hashizume D, Shimizu T, Yokoyama S 2007 Acta Cryst. E 63 O3802

    [34]

    Gražulis S, Daškevič A, Merkys A, Chateigner D, Lutterotti L, Quirós M, Serebryanaya N R, Moeck P, Downs R T, Le Bail A 2012 Nucleic Acids Res. 40 D420

    [35]

    Moreno A J D, Freire P T C, Guedes I, Melo F E A, Mendes J, Sanjurjo J A 1999 Braz. J. Phys. 29 380

    [36]

    Casado J, LóPez Navarrete J T, Ramírez F J 1995 J. Raman Spectrosc. 26 1003

    [37]

    Matei A, Drichko N, Gompf B, Dressel M 2005 Chem. Phys. 316 61

    [38]

    Yogam F, Potheher I V, Jeyasekaran R, Vimalan M, Arockiaraj M A, Sagayaraj P 2013 J. Therm. Anal. Calorim. 114 1153

  • [1] 陶蒙蒙, 王亚民, 吴昊龙, 李国华, 王晟, 陶波, 叶景峰, 冯国斌, 叶锡生, 陈卫标. 基于宽带可调谐、窄线宽掺铥光纤激光器的2 μm波段水的超光谱吸收测量. 物理学报, 2022, 71(11): 114203. doi: 10.7498/aps.71.20212127
    [2] 王志全, 施卫. 太赫兹时域光谱中脉冲太赫兹波全息探测. 物理学报, 2022, 71(18): 188704. doi: 10.7498/aps.71.20220983
    [3] 段铜川, 闫韶健, 赵妍, 孙庭钰, 李阳梅, 朱智. 水的氢键网络动力学与其太赫兹频谱的关系. 物理学报, 2021, 70(24): 248702. doi: 10.7498/aps.70.20211731
    [4] 侯磊, 王俊喃, 王磊, 施卫. α-乳糖水溶液太赫兹吸收光谱实验研究及模拟分析. 物理学报, 2021, 70(24): 243202. doi: 10.7498/aps.70.20211716
    [5] 陈旭生, 李九生. 缺陷组合嵌入VO2薄膜结构的可调太赫兹吸收器. 物理学报, 2020, 69(2): 027801. doi: 10.7498/aps.69.20191511
    [6] 方雨青, 金钻明, 陈海洋, 阮舜逸, 李炬赓, 曹世勋, 彭滟, 马国宏, 朱亦鸣. 高通量制备的SmxPr1–xFeO3晶体中反铁磁自旋模式和晶体场跃迁的太赫兹光谱. 物理学报, 2020, 69(20): 209501. doi: 10.7498/aps.69.20200732
    [7] 任壮, 成龙, 谢尔盖·固瑞特斯基, 那泽亚·柳博奇科, 李江涛, 尚加敏, 谢尔盖·巴里洛, 武安华, 亚历山大·卡拉什尼科娃, 马宗伟, 周春, 盛志高. Ho1–xYxFeO3单晶自旋重取向的掺杂效应与磁控效应的太赫兹光谱. 物理学报, 2020, 69(20): 207802. doi: 10.7498/aps.69.20201518
    [8] 牛青辰, 苟君, 王军, 蒋亚东. 钛圆盘阵列增强微测辐射热计太赫兹波吸收特性. 物理学报, 2019, 68(20): 208501. doi: 10.7498/aps.68.20190902
    [9] 陈俊, 杨茂生, 李亚迪, 程登科, 郭耿亮, 蒋林, 张海婷, 宋效先, 叶云霞, 任云鹏, 任旭东, 张雅婷, 姚建铨. 基于超材料的可调谐的太赫兹波宽频吸收器. 物理学报, 2019, 68(24): 247802. doi: 10.7498/aps.68.20191216
    [10] 阎昊岚, 程雅青, 王凯礼, 王雅昕, 陈洋玮, 袁秋林, 马恒. 烷基环己苯异硫氰酸液晶材料太赫兹波吸收. 物理学报, 2019, 68(11): 116102. doi: 10.7498/aps.68.20190209
    [11] 张旭涛, 阙肖峰, 蔡禾, 孙金海, 张景, 李粮生, 刘永强. 太赫兹雷达散射截面的仿真与时域光谱测量. 物理学报, 2019, 68(16): 168701. doi: 10.7498/aps.68.20190552
    [12] 鹿文亮, 娄淑琴, 王鑫, 申艳, 盛新志. 基于太赫兹时域光谱技术的伪色彩太赫兹成像的实验研究. 物理学报, 2015, 64(11): 114206. doi: 10.7498/aps.64.114206
    [13] 孟增睿, 张伟斌, 杜宇, 尚丽平, 邓琥. FOX-7转晶行为的太赫兹光谱及理论计算研究. 物理学报, 2015, 64(7): 073302. doi: 10.7498/aps.64.073302
    [14] 梁达川, 魏明贵, 谷建强, 尹治平, 欧阳春梅, 田震, 何明霞, 韩家广, 张伟力. 缩比模型的宽频时域太赫兹雷达散射截面(RCS)研究. 物理学报, 2014, 63(21): 214102. doi: 10.7498/aps.63.214102
    [15] 莫漫漫, 文岐业, 陈智, 杨青慧, 李胜, 荆玉兰, 张怀武. 基于圆台结构的超宽带极化不敏感太赫兹吸收器. 物理学报, 2013, 62(23): 237801. doi: 10.7498/aps.62.237801
    [16] 余荣, 江月松, 余兰, 欧军. 利用散射光增强弱吸收固体混合物中主要光吸收物质的光声光谱特征. 物理学报, 2013, 62(8): 087802. doi: 10.7498/aps.62.087802
    [17] 刘文军, 毛宏燕, 付国庆, 曲士良. 散射介质中多重散射太赫兹脉冲的时域统计特性. 物理学报, 2010, 59(2): 913-917. doi: 10.7498/aps.59.913
    [18] 马金龙, 徐开俊, 李哲, 金飚兵, 傅荣, 张彩虹, 吉争鸣, 张仓, 陈兆旭, 陈健, 吴培亨. D-,L-和DL-奥硝唑随温度变化的太赫兹光谱. 物理学报, 2009, 58(9): 6101-6107. doi: 10.7498/aps.58.6101
    [19] 马晓菁, 赵红卫, 代 斌, 刘桂锋. 次黄嘌呤及其核苷的THz光谱. 物理学报, 2008, 57(6): 3429-3434. doi: 10.7498/aps.57.3429
    [20] 马士华, 施宇蕾, 徐新龙, 严 伟, 杨玉平, 汪 力. 用太赫兹时域光谱技术探测天冬酰胺的低频集体吸收频谱. 物理学报, 2006, 55(8): 4091-4095. doi: 10.7498/aps.55.4091
计量
  • 文章访问数:  3884
  • PDF下载量:  1163
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-04-13
  • 修回日期:  2014-05-13
  • 刊出日期:  2014-07-05

L-天冬酰胺及其一水合物的太赫兹光谱研究

  • 1. 天津大学太赫兹波研究中心, 天津大学精密仪器与光电子工程学院, 光电信息技术教育部重点实验室, 天津 300072;
  • 2. 中国科学院上海应用物理研究所, 上海 201800
    基金项目: 中国科学院知识创新工程重要方向性项目、国家重点基础研究发展计划(973计划)(批准号:2014CB3398,2010CB832903)和国家自然科学基金(批准号:10675157)资助的课题.

摘要: 本文利用太赫兹时域光谱技术测量了室温条件下无水L-天冬酰胺与L- 天冬酰胺一水合物的光谱特征,发现二者存在显著的差异,并利用太赫兹时域光谱技术实时检测L-天冬酰胺一水合物受热脱水的动态过程. 结果表明太赫兹波对晶体结构变化、含结晶水状况以及分子间弱相互作用敏感. 结合差示扫描量热法与热重分析联用、傅里叶变换红外光谱、粉末X射线衍射等多种技术分别从热学性质、分子振动等方面进行了表征,进一步确认了太赫兹实验结果的可靠性. 采用基于密度泛函理论(DFT)的第一性原理平面波赝势方法,结合广义梯度近似(GGA)下的PBE交换-关联泛函,对L-天冬酰胺一水合物进行模拟计算,对实验所得太赫兹光谱与分子结构以及相互作用间的关系进行了讨论分析.

English Abstract

参考文献 (38)

目录

    /

    返回文章
    返回