搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

激光二极管抽运的Nd:YVO4连续自拉曼1175nm激光器

樊莉 陈海涛 朱骏

引用本文:
Citation:

激光二极管抽运的Nd:YVO4连续自拉曼1175nm激光器

樊莉, 陈海涛, 朱骏

Laser diode end-pumped continuous-wave Nd:YVO4 self-Raman laser at 1175 nm

Fan Li, Chen Hai-Tao, Zhu Jun
PDF
导出引用
  • 报道了采用激光二极管端面抽运的Nd:YVO4晶体连续自拉曼激光器的实验研究. 通过对晶体掺杂浓度及晶体结构的选择优化,减轻自拉曼晶体的热效应,实现了结构紧凑的1175 nm连续自拉曼激光器的高效运转. 最终以两端键合的复合Nd:YVO4晶体作为自拉曼介质,在25.5 W的抽运功率下,获得了最高3.4 W的1175 nm连续拉曼光输出,光光转换效率为13.3%,拉曼阈值低至2.21 W,斜效率为14.6%.
    In this paper, an LD (laser diode) end-pumped continuous-wave Nd:YVO4 self-Raman laser at 1175 nm is reported. The doping concentration and structure of the self-Raman crystals are optimized to reduce the thermal effects of the crystal, and a high-efficient diode-end-pumped continuous-wave self-Raman laser operated at 1175 nm is demonstrated. Finally, the thermal effects are efficiently improved by using a double-end diffusion-bonded composite Nd:YVO4 crystal as a gain medium. An output power up to 3.4 W of the first-order Stokes line 1175 nm is achieved at the incident diode pump power of 25.5 W, corresponding to a diode-to-Stokes optical conversion efficiency of 13.3% and a slope efficiency of 14.6%. The Raman threshold is as low as 2.21 W of diode power at 808 nm.
    • 基金项目: 江苏省自然科学基金青年科学基金(批准号:BK20130453)和国家自然科学基金青年科学基金(批准号:11004170)资助的课题.
    • Funds: Project supported by the Young Scientists Fund of the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20130453), and the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 11004170).
    [1]

    Zhu H Y, Zhang G, Zhang Y J, Huang C H, Duan Y M, Wei Y, Wei P F, Yu Y L 2011 Acta Phys. Sin. 60 094209 (in Chinese) [朱海永, 张戈, 张耀举, 黄呈辉, 段延敏, 魏勇, 尉鹏飞, 于永丽 2011 物理学报 60 094209]

    [2]
    [3]

    Wang B S, Peng J Y, Miao J G, Li Y M, Hao E J, Zhang Z, Gao L L, Tan H M 2007 Chin. Phys. Lett. 24 112

    [4]
    [5]

    Wang B S, Tan H M, Gao L L, Peng J Y, Miao J G 2006 Chin. Phys. Lett. 23 2095

    [6]
    [7]

    Wang Z P, Hu D W, Fang X, Zhang H J, Xu X G, Wang J Y, Shao Z S 2008 Chin. Phys. Lett. 25 122

    [8]
    [9]

    Su F F, Zhang X Y, Wang Q P, Chang J, Jia P, Li S T, Zhang X L, Cong Z H 2007 Chin. Phys. B 16 3370

    [10]
    [11]

    Grabtchikov A S, Lisinetskii V A, Orlovich V A, Schmitt M, Maksimenka R, Kiefer W 2004 Opt. Lett. 29 2524

    [12]
    [13]
    [14]

    Demidovich A A, Grabtchikov A S, Lisinetskii V A, Burakevich V N, Orlovich V A, Kiefer W 2005 Opt. Lett. 30 1701

    [15]
    [16]

    Burakevich V N, Lisinetskii V A, Grabtchikov A S, Demidovich A A, Orlovich V A, Matrosov V N 2007 Appl. Phys. B 86 511

    [17]
    [18]

    Lisinetskii V A, Grabtchikov A S, Demidovich A A, Burakevich V N, Orlovich V A, Titov A N 2007 Appl. Phys. B 88 499

    [19]

    Lee A J, Pask H M, Omatsu T, Dekker P, Piper J A 2007 Appl. Phys. B 88 539

    [20]
    [21]

    Dekker P, Pask H M, Spence D J, Piper J A 2007 Opt. Express 15 7038

    [22]
    [23]
    [24]

    Lee A J, Pask H M, Dekker P, Piper J A 2008 Opt. Express 16 21958

    [25]

    MacDonald M P, Graf T, Balmer J E, Weber H P 2000 Opt. Commun. 178 383

    [26]
    [27]
    [28]

    Chang Y T, Su K W, Chang H L, Chen Y F 2009 Opt. Express 17 4330

    [29]

    Lu Y F, Zhang X H, Li S T, Xia J, Cheng W B, Xiong Z 2010 Opt. Lett. 35 2964

    [30]
    [31]
    [32]

    Kaminskii A A, Ueda K, Eichler, H J, Kuwano Y, Kouta H, Bagaev S N, Chyba T H, Barnes J C, Gad G M A, Murai T, Lu J R 2001 Opt. Commun. 194 201

    [33]
    [34]

    Chen Y F 1999 IEEE J. Quantum Electron. 35 234

    [35]

    Chang Y F, Huang Y P, Su K W, Chen Y F 2008 Opt. Express 16 21155

  • [1]

    Zhu H Y, Zhang G, Zhang Y J, Huang C H, Duan Y M, Wei Y, Wei P F, Yu Y L 2011 Acta Phys. Sin. 60 094209 (in Chinese) [朱海永, 张戈, 张耀举, 黄呈辉, 段延敏, 魏勇, 尉鹏飞, 于永丽 2011 物理学报 60 094209]

    [2]
    [3]

    Wang B S, Peng J Y, Miao J G, Li Y M, Hao E J, Zhang Z, Gao L L, Tan H M 2007 Chin. Phys. Lett. 24 112

    [4]
    [5]

    Wang B S, Tan H M, Gao L L, Peng J Y, Miao J G 2006 Chin. Phys. Lett. 23 2095

    [6]
    [7]

    Wang Z P, Hu D W, Fang X, Zhang H J, Xu X G, Wang J Y, Shao Z S 2008 Chin. Phys. Lett. 25 122

    [8]
    [9]

    Su F F, Zhang X Y, Wang Q P, Chang J, Jia P, Li S T, Zhang X L, Cong Z H 2007 Chin. Phys. B 16 3370

    [10]
    [11]

    Grabtchikov A S, Lisinetskii V A, Orlovich V A, Schmitt M, Maksimenka R, Kiefer W 2004 Opt. Lett. 29 2524

    [12]
    [13]
    [14]

    Demidovich A A, Grabtchikov A S, Lisinetskii V A, Burakevich V N, Orlovich V A, Kiefer W 2005 Opt. Lett. 30 1701

    [15]
    [16]

    Burakevich V N, Lisinetskii V A, Grabtchikov A S, Demidovich A A, Orlovich V A, Matrosov V N 2007 Appl. Phys. B 86 511

    [17]
    [18]

    Lisinetskii V A, Grabtchikov A S, Demidovich A A, Burakevich V N, Orlovich V A, Titov A N 2007 Appl. Phys. B 88 499

    [19]

    Lee A J, Pask H M, Omatsu T, Dekker P, Piper J A 2007 Appl. Phys. B 88 539

    [20]
    [21]

    Dekker P, Pask H M, Spence D J, Piper J A 2007 Opt. Express 15 7038

    [22]
    [23]
    [24]

    Lee A J, Pask H M, Dekker P, Piper J A 2008 Opt. Express 16 21958

    [25]

    MacDonald M P, Graf T, Balmer J E, Weber H P 2000 Opt. Commun. 178 383

    [26]
    [27]
    [28]

    Chang Y T, Su K W, Chang H L, Chen Y F 2009 Opt. Express 17 4330

    [29]

    Lu Y F, Zhang X H, Li S T, Xia J, Cheng W B, Xiong Z 2010 Opt. Lett. 35 2964

    [30]
    [31]
    [32]

    Kaminskii A A, Ueda K, Eichler, H J, Kuwano Y, Kouta H, Bagaev S N, Chyba T H, Barnes J C, Gad G M A, Murai T, Lu J R 2001 Opt. Commun. 194 201

    [33]
    [34]

    Chen Y F 1999 IEEE J. Quantum Electron. 35 234

    [35]

    Chang Y F, Huang Y P, Su K W, Chen Y F 2008 Opt. Express 16 21155

  • [1] 段延敏, 周玉明, 孙瑛璐, 李志红, 张耀举, 王鸿雁, 朱海永. 声光调Q Nd:YVO4晶体级联拉曼倍频窄脉宽657 nm激光器. 物理学报, 2021, 70(22): 224209. doi: 10.7498/aps.70.20210695
    [2] 刘海旭, 侯满宏, 李新胜. X频段连续波100 kW吸收式谐波滤波器研制. 物理学报, 2018, 67(19): 198401. doi: 10.7498/aps.67.20180577
    [3] 张蕴川, 樊莉, 魏晨飞, 顾晓敏, 任思贤. 波长锁定878.9 nm激光二极管抽运内腔式YVO4/BaWO4连续波拉曼激光器. 物理学报, 2018, 67(2): 024206. doi: 10.7498/aps.67.20171848
    [4] 张鑫, 张蕴川, 李建, 李仁杰, 宋庆坤, 张佳乐, 樊莉. 波长锁定激光二极管共振泵浦Nd:YVO4晶体连续波自拉曼激光器的设计与研究. 物理学报, 2017, 66(19): 194203. doi: 10.7498/aps.66.194203
    [5] 于永吉, 陈薪羽, 成丽波, 王超, 吴春婷, 董渊, 李述涛, 金光勇. 基于MgO:APLN的1.57m/3.84m连续波内腔多光参量振荡器研究. 物理学报, 2015, 64(22): 224215. doi: 10.7498/aps.64.224215
    [6] 张会云, 刘蒙, 张玉萍, 申端龙, 吴志心, 尹贻恒, 李德华. 连续波抽运气体波导产生太赫兹激光的理论研究. 物理学报, 2014, 63(2): 020702. doi: 10.7498/aps.63.020702
    [7] 周英, 戴玉, 姚淑娜, 刘军, 陈家斌, 陈淑芬, 辛建国. 激光二极管抽运Nd:YVO4晶体的三维热效应分析. 物理学报, 2013, 62(2): 024210. doi: 10.7498/aps.62.024210
    [8] 刘欢, 王巍, 巩马理. 角抽运Nd:YAG复合板条946 nm连续运转激光器 . 物理学报, 2013, 62(14): 144205. doi: 10.7498/aps.62.144205
    [9] 刁其龙, 黄春琳. 抑制穿过具有倾斜角度的介质探测成像时产生的寄生干涉条纹现象. 物理学报, 2012, 61(21): 210204. doi: 10.7498/aps.61.210204
    [10] 朱海永, 张戈, 张耀举, 黄呈辉, 段延敏, 魏勇, 尉鹏飞, 于永丽. LD端面抽运c切Nd:YVO4自拉曼倍频589 nm黄光激光研究. 物理学报, 2011, 60(9): 094209. doi: 10.7498/aps.60.094209
    [11] 刘欢, 巩马理. 紧凑型激光二极管抽运全固态355 nm连续波紫外激光器. 物理学报, 2009, 58(10): 7000-7004. doi: 10.7498/aps.58.7000
    [12] 张玉萍, 张会云, 何志红, 王鹏, 李喜福, 姚建铨. 36 W侧面抽运腔内倍频Nd:YAG/KTP连续绿光激光器. 物理学报, 2009, 58(7): 4647-4651. doi: 10.7498/aps.58.4647
    [13] 张恒利, 闫 莹, 杜克明. 激光二极管端面抽运Nd∶YVO4晶体连续输出板条激光器研究. 物理学报, 2008, 57(11): 6982-6986. doi: 10.7498/aps.57.6982
    [14] 韩 琳, 宋 峰, 万从尚, 邹昌光, 闫立华, 张 康, 田建国. 自受激拉曼晶体Nd3+:SrMoO4的光谱性质研究. 物理学报, 2007, 56(3): 1751-1757. doi: 10.7498/aps.56.1751
    [15] 武丁二, 周 睿, 张晓华, 丁 欣, 姚建铨, 颜彩繁, 张光寅. LD端抽运平直腔Nd:YVO4固态激光器的输出功率特性研究. 物理学报, 2006, 55(3): 1196-1200. doi: 10.7498/aps.55.1196
    [16] 柳 强, 巩马理, 李 晨, 宫武鹏, 陆富源, 陈 刚. 角抽运Yb:YAG激光器. 物理学报, 2005, 54(2): 721-725. doi: 10.7498/aps.54.721
    [17] 柳强, 巩马理, 闫平, 贾维溥, 崔瑞祯, 王东生. GaAs被动调Q兼输出耦合Nd∶YVO4激光特性研究. 物理学报, 2002, 51(12): 2756-2760. doi: 10.7498/aps.51.2756
    [18] 冯衍, 宋峰, 赵丽娟, 张潮波, 郭红沧, 张光寅. LD抽运Nd:YVO4晶体中的上转换及其影响. 物理学报, 2001, 50(2): 335-340. doi: 10.7498/aps.50.335
    [19] 何京良, 卢兴强, 贾玉磊, 满宝元, 祝世宁, 朱永元. BBO四倍频全固态Nd:YVO4紫外激光器. 物理学报, 2000, 49(10): 2106-2108. doi: 10.7498/aps.49.2106
    [20] 张恒利, 何京良, 陈毓川, 侯 玮, 刘 嵘, 冯宝华, 许祖彦, 王建明, 吴 星, 吴柏昌, 陈创天. 激光二极管抽运Nd∶YVO4晶体1342nm和671nm激光器研究. 物理学报, 1998, 47(9): 1579-1584. doi: 10.7498/aps.47.1579
计量
  • 文章访问数:  3290
  • PDF下载量:  338
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-02-11
  • 修回日期:  2014-02-27
  • 刊出日期:  2014-08-05

激光二极管抽运的Nd:YVO4连续自拉曼1175nm激光器

  • 1. 扬州大学物理科学与技术学院, 扬州 225002
    基金项目: 江苏省自然科学基金青年科学基金(批准号:BK20130453)和国家自然科学基金青年科学基金(批准号:11004170)资助的课题.

摘要: 报道了采用激光二极管端面抽运的Nd:YVO4晶体连续自拉曼激光器的实验研究. 通过对晶体掺杂浓度及晶体结构的选择优化,减轻自拉曼晶体的热效应,实现了结构紧凑的1175 nm连续自拉曼激光器的高效运转. 最终以两端键合的复合Nd:YVO4晶体作为自拉曼介质,在25.5 W的抽运功率下,获得了最高3.4 W的1175 nm连续拉曼光输出,光光转换效率为13.3%,拉曼阈值低至2.21 W,斜效率为14.6%.

English Abstract

参考文献 (35)

目录

    /

    返回文章
    返回