搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

L10-FePt合金单层磁性薄膜的微磁学模拟

李正华 李翔

引用本文:
Citation:

L10-FePt合金单层磁性薄膜的微磁学模拟

李正华, 李翔

Micromagnetic modeling of L10-ordered FePtmagnetic thin films

Li Zheng-Hua, Li Xiang
PDF
导出引用
  • 具有四方结构的L10-FePt合金因其具有高磁晶各向异性和良好的化学稳定性而成为超高密度薄膜磁记录介质的最佳选择. 对实验制备得到的磁性能良好的垂直取向L10-FePt合金单层膜进行了微磁学分析. 在传统微磁学模型的基础上,根据晶体的对称性,引入了四角磁晶各向异性能密度的唯象表达形式; 又依据薄膜生长过程中晶格对称性的破坏,考虑了薄膜面内的应力,并引入了磁弹性能. 以四角磁晶各向异性能和磁弹性能为重点,对L10-FePt合金单层膜的磁滞回线进行了详细的分析,并且用微磁学方法确定了薄膜面内应力的大小.
    The L10-ordered FePt films are promising materials for ultra high density magnetic recording media due to their high magnetic anisotropies. In this work, the L10-ordered FePt thin films are prepared by magnetron sputtering on CrW underlayer. A three-dimensional micromagnetic model, based on the symmetry of the L10 phase, is set up for FePt perpendicular media. According to the mismatch between the underlayer and FePt magnetic layer, a residual tensile stress is applied in the film plane. The simulated M-H loops accord well with the experimental results. The tetragonal crystalline anisotropy, especially high in-plane anisotropy, could enlarge the in-plane coercivity. The simulated perpendicular and longitudinal loops each have an open up in the tail, which is mainly due to the magnetostriction of the L10 phase.
    • 基金项目: 国家自然科学基金(批准号:61103148,51202146)、辽宁省高等学校优秀人才支持计划(批准号:LJQ2013129)和教育部留学回国人员科研启动基金资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61103148, 51202146), the Program for Excellent Talents in Institution of Higher Education of Province, China (Grant No. LJQ2013129), and the 46th Scientific Research Starting Foundation for the Returned Overseas Chinese Scholars of Ministry of Education, China.
    [1]

    Li L, Jiang L L, Zeng Y, Liu G 2013 Chin. Phys. B 22 127503

    [2]

    Maenosono S, Suzuki T, Saita S 2008 J. Magn. Magn. Mater. 320 L79

    [3]

    Zhang X, Shi L, Li J, Xia Y J, Shi Z, Zhou S M 2013 Chin. Phys. B 22 117803

    [4]

    Mizukami S, Iihama S, Inami N, Hiratsuka T, Kim G, Naganuma H, Oogane M, Ando Y 2011 Appl. Phys. Lett. 98 052501

    [5]

    Feng C, Zhan Q, Li B H, Teng J, Li M H, Jiang Y, Yu G H 2009 Acta Phys. Sin. 58 3503 (in Chinese) [冯春, 詹倩, 李宝河, 滕蛟, 李明华, 姜勇, 于广华 2009 物理学报 58 3503]

    [6]

    Liu L W, Dang H G, Sheng W, Wang Y, Cao J W, Bai J M, Wei F L 2013 Chin. Phys. B 22 047503

    [7]

    Wang Y, Wang R, Xie H L, Bai J M, Wei F L 2013 Chin. Phys. B 22 068506

    [8]

    Ho P, Evans R F L, Chantrell R W, Han G C, Chow G M, Chen J S 2011 Appl. Phys. Lett. 99 162503

    [9]

    McCallum A T, Krone P, Springer F, Brombacher C, Albrecht M, Dobisz E, Grobis M, Weller D, Hellwig O 2011 Appl. Phys. Lett. 98 242503

    [10]

    Laenens B, Almeida F M, Planckaert N, Temst K, Meersschaut J, Vantomme A, Rentenberger C, Rennhofer M, Sepiol B 2009 J. Appl. Phys. 105 073913

    [11]

    Sun A C, Hsu J H, Huang H L, Kuo P C 2006 J. Appl. Phys. 99 08E709

    [12]

    Sun A C, Yuan F T, Hsu J H 2010 J. Phys.: Conf. Ser. 200 102009

    [13]

    Landau L D, Lifshitz E M 1984 Electrodynamics of Continuous Media (2nd Ed.) (New York: Pergamon Press) p138

    [14]

    Cao J, Cai J, Liu Y, Yang Z, Wei F, Xia A, Han B, Bai J 2006 J. Appl. Phys. 99 08F901

    [15]

    Rasmussen P, Rui X, Shield J E 2005 Appl. Phys. Lett. 86 191915

    [16]

    White G K, Roberts R B, Fawcettt E 1986 J. Phys. F: Met. Phys. 16 449

    [17]

    Nix F C, MacNair D 1941 Phys. Rev. 60 597

    [18]

    Nahid M A I, Suzuki T 2005 J. Appl. Phys. 97 10K307

  • [1]

    Li L, Jiang L L, Zeng Y, Liu G 2013 Chin. Phys. B 22 127503

    [2]

    Maenosono S, Suzuki T, Saita S 2008 J. Magn. Magn. Mater. 320 L79

    [3]

    Zhang X, Shi L, Li J, Xia Y J, Shi Z, Zhou S M 2013 Chin. Phys. B 22 117803

    [4]

    Mizukami S, Iihama S, Inami N, Hiratsuka T, Kim G, Naganuma H, Oogane M, Ando Y 2011 Appl. Phys. Lett. 98 052501

    [5]

    Feng C, Zhan Q, Li B H, Teng J, Li M H, Jiang Y, Yu G H 2009 Acta Phys. Sin. 58 3503 (in Chinese) [冯春, 詹倩, 李宝河, 滕蛟, 李明华, 姜勇, 于广华 2009 物理学报 58 3503]

    [6]

    Liu L W, Dang H G, Sheng W, Wang Y, Cao J W, Bai J M, Wei F L 2013 Chin. Phys. B 22 047503

    [7]

    Wang Y, Wang R, Xie H L, Bai J M, Wei F L 2013 Chin. Phys. B 22 068506

    [8]

    Ho P, Evans R F L, Chantrell R W, Han G C, Chow G M, Chen J S 2011 Appl. Phys. Lett. 99 162503

    [9]

    McCallum A T, Krone P, Springer F, Brombacher C, Albrecht M, Dobisz E, Grobis M, Weller D, Hellwig O 2011 Appl. Phys. Lett. 98 242503

    [10]

    Laenens B, Almeida F M, Planckaert N, Temst K, Meersschaut J, Vantomme A, Rentenberger C, Rennhofer M, Sepiol B 2009 J. Appl. Phys. 105 073913

    [11]

    Sun A C, Hsu J H, Huang H L, Kuo P C 2006 J. Appl. Phys. 99 08E709

    [12]

    Sun A C, Yuan F T, Hsu J H 2010 J. Phys.: Conf. Ser. 200 102009

    [13]

    Landau L D, Lifshitz E M 1984 Electrodynamics of Continuous Media (2nd Ed.) (New York: Pergamon Press) p138

    [14]

    Cao J, Cai J, Liu Y, Yang Z, Wei F, Xia A, Han B, Bai J 2006 J. Appl. Phys. 99 08F901

    [15]

    Rasmussen P, Rui X, Shield J E 2005 Appl. Phys. Lett. 86 191915

    [16]

    White G K, Roberts R B, Fawcettt E 1986 J. Phys. F: Met. Phys. 16 449

    [17]

    Nix F C, MacNair D 1941 Phys. Rev. 60 597

    [18]

    Nahid M A I, Suzuki T 2005 J. Appl. Phys. 97 10K307

计量
  • 文章访问数:  1878
  • PDF下载量:  520
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-04-15
  • 修回日期:  2014-04-25
  • 刊出日期:  2014-08-05

L10-FePt合金单层磁性薄膜的微磁学模拟

  • 1. 大连民族学院物理材料与工程学院, 大连 116600;
  • 2. 上海理工大学材料科学与工程学院, 上海 200093
    基金项目: 

    国家自然科学基金(批准号:61103148,51202146)、辽宁省高等学校优秀人才支持计划(批准号:LJQ2013129)和教育部留学回国人员科研启动基金资助的课题.

摘要: 具有四方结构的L10-FePt合金因其具有高磁晶各向异性和良好的化学稳定性而成为超高密度薄膜磁记录介质的最佳选择. 对实验制备得到的磁性能良好的垂直取向L10-FePt合金单层膜进行了微磁学分析. 在传统微磁学模型的基础上,根据晶体的对称性,引入了四角磁晶各向异性能密度的唯象表达形式; 又依据薄膜生长过程中晶格对称性的破坏,考虑了薄膜面内的应力,并引入了磁弹性能. 以四角磁晶各向异性能和磁弹性能为重点,对L10-FePt合金单层膜的磁滞回线进行了详细的分析,并且用微磁学方法确定了薄膜面内应力的大小.

English Abstract

参考文献 (18)

目录

    /

    返回文章
    返回