搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

离散变质量完整系统的Noether对称性与Mei对称性

王菲菲 方建会 王英丽 徐瑞莉

引用本文:
Citation:

离散变质量完整系统的Noether对称性与Mei对称性

王菲菲, 方建会, 王英丽, 徐瑞莉

Noether symmetry and Mei symmetry of a discrete holonomic mechanical system with variable mass

Wang Fei-Fei, Fang Jian-Hui, Wang Ying-Li, Xu Rui-Li
PDF
导出引用
  • 本文研究离散变质量完整系统的Noether对称性与Mei对称性. 首先用差分离散变分的方法,建立起离散变质量完整系统的运动方程和能量演化方程. 然后给出该系统的Noether对称性和Mei对称性的定义及离散Noether守恒量的形式. 得到系统的Noether对称性与Mei对称性导致离散Noether守恒量的条件. 最后举例说明结果的应用.
    This paper studies the Noether symmetry and Mei symmetry of a discrete holonomic mechanical system with variable mass. Firstly, by the difference discrete variation approach, the discrete equations of motion of the system are established. Secondly, the definitions of Noether symmetry and Mei symmetry are given, and the conditions under which the Noether conserved quantity can be induced by Noether symmetry and Mei symmetry are obtained. Finally, an example is discussed to illustrate these results.
    • 基金项目: 山东省自然科学基金(批准号:ZR2011AM012)资助的课题.
    • Funds: Project supported by the Natural Science Foundation of Shandong Province of China (Grant No. ZR2011AM012).
    [1]

    Noether A E 1918 Math. Phys. KI Ⅱ 235

    [2]
    [3]

    Lutzky M 1979 J. Phys. A: Math. Gen. 12 973

    [4]

    Mei F X 2000 J. Beijing Inst. Tech. 9 120

    [5]
    [6]

    Bluman G W, Kumei S 1989 Symmetries and differential equations (New York: Spinger verlag)

    [7]
    [8]

    Hojman S A A 1992 J. Phys. A: Math. Gen. 25 L291

    [9]
    [10]
    [11]

    Mei F X, Liu R, Luo Y 1991 Advanced analytical mechanics (Beijing: Beijing Institute of Technology Press) (in Chinese)[梅凤翔, 刘瑞, 罗勇1991高等分析力学(北京: 北京理工大学出版社)]

    [12]
    [13]

    Mei F X 2004 Symmetries and Conserved Quantities of Constrained Mechanical Systems (Beijing: Beijing Institute of Technology Press) (in Chinese)[梅凤翔2004约束力学系统的对称性与守恒量(北京: 北京理工大学出版社)]

    [14]

    Mei F X 1999 Application of Lie group and Lie Algebras to Constrained Mechanical Systems (Beijing: Science Press) (in Chinese)[梅凤翔1999李群李代数对约束力学系统的应用(北京: 科学出版社)]

    [15]
    [16]

    Qiao Y F, Zhao S H 2006 Acta Phys. Sin. 55 499 (in Chinese)[乔永芬, 赵淑红 2006 物理学报 55 499]

    [17]
    [18]
    [19]

    Guo Y X, Zhao Z, Liu S X, Wang Y, Zhu N, Han X J 2006 Acta Phys. Sin. 55 3838 (in Chinese)[郭永新, 赵喆, 刘世兴, 王勇, 朱娜, 韩晓静 2006 物理学报 55 3838]

    [20]
    [21]

    Wu H B, Mei F X 2006 Acta Phys. Sin. 55 3825 (in Chinese)[吴惠彬, 梅凤翔 2006 物理学报 55 3825]

    [22]
    [23]

    Jia L Q, Zhang Y Y, Zheng S W 2007 Acta Phys. Sin. 56 649 (in Chinese)[贾利群, 张耀宇, 郑世旺 2007 物理学报 56 649]

    [24]

    Ge W K 2008 Acta Phys. Sin. 57 6714 (in Chinese)[葛伟宽 2008 物理学报 57 6714]

    [25]
    [26]
    [27]

    Zhang Y 2012 Acta Phys. Sin. 61 214501 (in Chinese)[张毅 2012 物理学报 61 214501]

    [28]

    Lou Z M, Mei F X 2012 Acta Phys. Sin. 61 110201 (in Chinese)[楼智美, 梅凤翔 2012 物理学报 61 110201]

    [29]
    [30]

    Marsden J E, West M 2001 Acta Numerica 357

    [31]
    [32]
    [33]

    Wendlandt J M, Marsden J E 1997 Physica D 106 223

    [34]

    Cadzow J D 1970 Int. J. Control 11 393

    [35]
    [36]

    Lee T D 1983 Phys. Lett. B 122 217

    [37]
    [38]

    Lee T D 1987 J. Statis. Phys. 46 843

    [39]
    [40]

    Chen J B, Guo H Y, Wu K 2003 J. Math. Phys. 44 1688

    [41]
    [42]
    [43]

    Chen J B, Guo H Y, Wu K 2006 Appl. Math. Comput. 177 226

    [44]
    [45]

    Shi S Y 2008 Ph. D. Dissertation (Shanghai: Shanghai University) (in Chinese)[施沈阳2008博士学位论文(上海: 上海大学)]

    [46]

    Guo H Y, Li Y Q, Wu K, Wang S K 2002 Commun. Theor. Phys. 37 1

    [47]
    [48]
    [49]

    Wu K, Guo H Y 2006 Journal of Captical Normal University 27 1 (in Chinese)[吴可, 郭汉英2006首都师范大学学报27 1]

    [50]
    [51]

    Lu K, Fang J H, Zhang M J, Wang P 2009 Acta Phys. Sin. 58 7421 (in Chinese)[路凯, 方建会, 张明江, 王鹏 2009 物理学报 58 7421]

    [52]
    [53]

    Zhang W W, Fang J H, Zhang B 2012 Jouinal of Dynamics Contral 10 117 (in Chinese)[张伟伟, 方建会, 张斌 2012 动力学与控制学报 10 117]

    [54]
    [55]

    Liu R W, Zhang H B, Chen L Q 2006 Chin. Phys. 15 249

    [56]

    Fu J L, Chen B Y, Chen L Q 2009 Phys. Lett. A 373 409

    [57]
    [58]
    [59]

    Zhang H B, Lv H S, Gu S L 2010 Acta Phys. Sin. 59 5213 (in Chinese)[张宏彬, 吕洪升, 顾书龙 2010 物理学报 59 5213]

  • [1]

    Noether A E 1918 Math. Phys. KI Ⅱ 235

    [2]
    [3]

    Lutzky M 1979 J. Phys. A: Math. Gen. 12 973

    [4]

    Mei F X 2000 J. Beijing Inst. Tech. 9 120

    [5]
    [6]

    Bluman G W, Kumei S 1989 Symmetries and differential equations (New York: Spinger verlag)

    [7]
    [8]

    Hojman S A A 1992 J. Phys. A: Math. Gen. 25 L291

    [9]
    [10]
    [11]

    Mei F X, Liu R, Luo Y 1991 Advanced analytical mechanics (Beijing: Beijing Institute of Technology Press) (in Chinese)[梅凤翔, 刘瑞, 罗勇1991高等分析力学(北京: 北京理工大学出版社)]

    [12]
    [13]

    Mei F X 2004 Symmetries and Conserved Quantities of Constrained Mechanical Systems (Beijing: Beijing Institute of Technology Press) (in Chinese)[梅凤翔2004约束力学系统的对称性与守恒量(北京: 北京理工大学出版社)]

    [14]

    Mei F X 1999 Application of Lie group and Lie Algebras to Constrained Mechanical Systems (Beijing: Science Press) (in Chinese)[梅凤翔1999李群李代数对约束力学系统的应用(北京: 科学出版社)]

    [15]
    [16]

    Qiao Y F, Zhao S H 2006 Acta Phys. Sin. 55 499 (in Chinese)[乔永芬, 赵淑红 2006 物理学报 55 499]

    [17]
    [18]
    [19]

    Guo Y X, Zhao Z, Liu S X, Wang Y, Zhu N, Han X J 2006 Acta Phys. Sin. 55 3838 (in Chinese)[郭永新, 赵喆, 刘世兴, 王勇, 朱娜, 韩晓静 2006 物理学报 55 3838]

    [20]
    [21]

    Wu H B, Mei F X 2006 Acta Phys. Sin. 55 3825 (in Chinese)[吴惠彬, 梅凤翔 2006 物理学报 55 3825]

    [22]
    [23]

    Jia L Q, Zhang Y Y, Zheng S W 2007 Acta Phys. Sin. 56 649 (in Chinese)[贾利群, 张耀宇, 郑世旺 2007 物理学报 56 649]

    [24]

    Ge W K 2008 Acta Phys. Sin. 57 6714 (in Chinese)[葛伟宽 2008 物理学报 57 6714]

    [25]
    [26]
    [27]

    Zhang Y 2012 Acta Phys. Sin. 61 214501 (in Chinese)[张毅 2012 物理学报 61 214501]

    [28]

    Lou Z M, Mei F X 2012 Acta Phys. Sin. 61 110201 (in Chinese)[楼智美, 梅凤翔 2012 物理学报 61 110201]

    [29]
    [30]

    Marsden J E, West M 2001 Acta Numerica 357

    [31]
    [32]
    [33]

    Wendlandt J M, Marsden J E 1997 Physica D 106 223

    [34]

    Cadzow J D 1970 Int. J. Control 11 393

    [35]
    [36]

    Lee T D 1983 Phys. Lett. B 122 217

    [37]
    [38]

    Lee T D 1987 J. Statis. Phys. 46 843

    [39]
    [40]

    Chen J B, Guo H Y, Wu K 2003 J. Math. Phys. 44 1688

    [41]
    [42]
    [43]

    Chen J B, Guo H Y, Wu K 2006 Appl. Math. Comput. 177 226

    [44]
    [45]

    Shi S Y 2008 Ph. D. Dissertation (Shanghai: Shanghai University) (in Chinese)[施沈阳2008博士学位论文(上海: 上海大学)]

    [46]

    Guo H Y, Li Y Q, Wu K, Wang S K 2002 Commun. Theor. Phys. 37 1

    [47]
    [48]
    [49]

    Wu K, Guo H Y 2006 Journal of Captical Normal University 27 1 (in Chinese)[吴可, 郭汉英2006首都师范大学学报27 1]

    [50]
    [51]

    Lu K, Fang J H, Zhang M J, Wang P 2009 Acta Phys. Sin. 58 7421 (in Chinese)[路凯, 方建会, 张明江, 王鹏 2009 物理学报 58 7421]

    [52]
    [53]

    Zhang W W, Fang J H, Zhang B 2012 Jouinal of Dynamics Contral 10 117 (in Chinese)[张伟伟, 方建会, 张斌 2012 动力学与控制学报 10 117]

    [54]
    [55]

    Liu R W, Zhang H B, Chen L Q 2006 Chin. Phys. 15 249

    [56]

    Fu J L, Chen B Y, Chen L Q 2009 Phys. Lett. A 373 409

    [57]
    [58]
    [59]

    Zhang H B, Lv H S, Gu S L 2010 Acta Phys. Sin. 59 5213 (in Chinese)[张宏彬, 吕洪升, 顾书龙 2010 物理学报 59 5213]

  • [1] 贾利群, 孙现亭, 张美玲, 张耀宇, 韩月林. 相对运动变质量力学系统Appell方程的广义Lie对称性导致的广义Hojman守恒量. 物理学报, 2014, 63(1): 010201. doi: 10.7498/aps.63.010201
    [2] 张芳, 李伟, 张耀宇, 薛喜昌, 贾利群. 变质量Chetaev型非完整系统Appell方程Mei对称性的共形不变性与守恒量. 物理学报, 2014, 63(16): 164501. doi: 10.7498/aps.63.164501
    [3] 张斌, 方建会, 张克军. 变质量非完整系统的Lagrange对称性与守恒量. 物理学报, 2012, 61(2): 021101. doi: 10.7498/aps.61.021101
    [4] 杨新芳, 孙现亭, 王肖肖, 张美玲, 贾利群. 变质量Chetaev型非完整系统Appell方程的Mei对称性和Mei守恒量. 物理学报, 2011, 60(11): 111101. doi: 10.7498/aps.60.111101
    [5] 顾书龙, 张宏彬. Kepler方程的Noether对称性与Hojman守恒量. 物理学报, 2010, 59(2): 716-718. doi: 10.7498/aps.59.716
    [6] 夏丽莉, 李元成, 王显军. 相对论性转动变质量非完整可控力学系统的非Noether守恒量. 物理学报, 2009, 58(1): 28-33. doi: 10.7498/aps.58.28
    [7] 夏丽莉, 李元成. 相对论性变质量非完整可控力学系统的非Noether守恒量. 物理学报, 2008, 57(8): 4652-4656. doi: 10.7498/aps.57.4652
    [8] 黄晓虹, 张晓波, 施沈阳. 离散差分序列变质量力学系统的Mei对称性. 物理学报, 2008, 57(10): 6056-6062. doi: 10.7498/aps.57.6056
    [9] 荆宏星, 李元成, 夏丽莉. 变质量单面完整约束系统Lie对称性的摄动与广义Hojman型绝热不变量. 物理学报, 2007, 56(6): 3043-3049. doi: 10.7498/aps.56.3043
    [10] 葛伟宽. 一类动力学方程的Mei对称性. 物理学报, 2007, 56(1): 1-4. doi: 10.7498/aps.56.1
    [11] 吴惠彬, 梅凤翔. 关于Noether对称性的两种理解. 物理学报, 2006, 55(8): 3825-3828. doi: 10.7498/aps.55.3825
    [12] 张鹏玉, 方建会. 变质量Birkhoff系统的Lie对称性和非Noether守恒量. 物理学报, 2006, 55(8): 3813-3816. doi: 10.7498/aps.55.3813
    [13] 顾书龙, 张宏彬. Emden方程的Mei对称性、Lie对称性和Noether对称性. 物理学报, 2006, 55(11): 5594-5597. doi: 10.7498/aps.55.5594
    [14] 方建会, 彭 勇, 廖永潘. 关于Lagrange系统和Hamilton系统的Mei对称性. 物理学报, 2005, 54(2): 496-499. doi: 10.7498/aps.54.496
    [15] 张 毅. 广义经典力学系统的对称性与Mei守恒量. 物理学报, 2005, 54(7): 2980-2984. doi: 10.7498/aps.54.2980
    [16] 顾书龙, 张宏彬. Vacco动力学方程的Mei对称性、Lie对称性和Noether对称性. 物理学报, 2005, 54(9): 3983-3986. doi: 10.7498/aps.54.3983
    [17] 李 红, 方建会. 变质量单面完整约束系统的Mei对称性. 物理学报, 2004, 53(9): 2807-2810. doi: 10.7498/aps.53.2807
    [18] 罗绍凯. Hamilton系统的Mei对称性、Noether对称性和Lie对称性. 物理学报, 2003, 52(12): 2941-2944. doi: 10.7498/aps.52.2941
    [19] 方建会. 相对论性变质量系统的守恒律. 物理学报, 2001, 50(6): 1001-1005. doi: 10.7498/aps.50.1001
    [20] 方建会, 赵嵩卿. 相对论性转动变质量系统的Lie对称性与守恒量. 物理学报, 2001, 50(3): 390-393. doi: 10.7498/aps.50.390
计量
  • 文章访问数:  3073
  • PDF下载量:  555
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-04-10
  • 修回日期:  2014-04-27
  • 刊出日期:  2014-09-05

离散变质量完整系统的Noether对称性与Mei对称性

  • 1. 中国石油大学理学院, 青岛 266555
    基金项目: 山东省自然科学基金(批准号:ZR2011AM012)资助的课题.

摘要: 本文研究离散变质量完整系统的Noether对称性与Mei对称性. 首先用差分离散变分的方法,建立起离散变质量完整系统的运动方程和能量演化方程. 然后给出该系统的Noether对称性和Mei对称性的定义及离散Noether守恒量的形式. 得到系统的Noether对称性与Mei对称性导致离散Noether守恒量的条件. 最后举例说明结果的应用.

English Abstract

参考文献 (59)

目录

    /

    返回文章
    返回