搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一级相变磁制冷材料的基础问题探究

陈湘 陈云贵 唐永柏 肖定全 李道华

引用本文:
Citation:

一级相变磁制冷材料的基础问题探究

陈湘, 陈云贵, 唐永柏, 肖定全, 李道华

Basic problem in the first-order phase transition magnetic refrigeration material

Chen Xiang, Chen Yun-Gui, Tang Yong-Bo, Xiao Ding-Quan, Li Dao-Hua
PDF
导出引用
  • 由于一级相变磁制冷材料发生磁相变时有晶胞体积的突变,相变过程中有相变潜热存在,其磁化过程中有许多磁学问题有待于进一步探究. 本文以LaFe13-xSix合金为研究对象,在现有对磁一级相变基础问题的分析基础上,对一级相变材料中系统熵变、等温熵变、绝热温变、热滞、磁滞、铁磁与顺磁态两相共存的温度区间和磁场区间、制冷能力的计算等磁学基础问题进行了较为细致的探究. 分析表明,在忽略完全铁磁态和顺磁态对磁热效应的贡献时,Maxwell 方程和Clausius-Clapeyron 方程计算熵变的值具有等效性. 等温磁化过程中升温和降温曲线包围的面积SABCE(磁滞的大小),实际上是升温过程和降温过程中磁场做的净功,等于相变潜热之差. 磁滞和热滞的大小与磁化过程数据测量的时间有关,测量时间越长则滞后越小,当相变是平衡相变则滞后为零. 另外,对温度和磁场诱导磁相变过程进行了分析,提出了一级相变磁制冷材料制冷能力的不同计算模型. 本文对一级相变磁制冷材料的磁学基础问题研究有一定的参考价值.
    Due to the cell volume mutations and the phase transition latent heat existing during phase transition of the first-order phase transition magnetic refrigeration material, many basic problems need to further explore in the magnetization process. In this paper, taking LaFe13-xSixalloys as the research object, we discuss in detail some problems, such as a phase-change, entropy change, isothermal entropy change, adiabatic temperature change, thermal and magnetic hysteresis, the temperature range and magnetic field range in which the ferromagnetic and paramagnetic state coexist, and magnetic refrigeration capacity calculation, The analysis shows that the magnetic entropies calculated by Maxwell equation and Clausius-Clapeyron equation are equivalent when neglecting the contributions of ferromagnetic and paramagnetic state to magnetocaloric effect. The area surrounded by the curve in heating of isothermal magnetization process and curve in cooling of isothermal magnetization process (hysteresis size) is actually the net work done by magnetic field during the heating process and cooling process. The values of magnetic and thermal hysteresis are related to the measurement time: the longer the measurement time, the smaller the hysteresis is. When the transformation is of the equilibrium phase, the hysteresis should be equal to zero. In addition, the temperature and magnetic field induced magnetic transition processes are discussed, and different calculation models of the first-order phase transition material for magnetic refrigeration refrigeration capacity are proposed.
    • 基金项目: 国家自然科学基金(批准号:51176050)和四川省教育厅科研项目(批准号:12ZB073,12ZA083)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51176050) and the Research Projects of Sichuan Province Education Office, China (Grant Nos. 12ZB073, 12ZA083).
    [1]

    Debye P 1926 Ann. Phys. 81 1154

    [2]

    Giauque W F 1927 J.Am.Chem Soc. 49 1864

    [3]

    Fujieda S, Fujita A 2007 J. Appl. Phys. 102 023907

    [4]

    Jiang S T, Li W 2006 Condensed Matter Magnetic Physics (Beijing: Science Press) p54 (in Chinese) [姜寿亭, 李卫 2006 凝聚态磁性物理 (北京: 科学出版社) 第54页]

    [5]

    Xu C, Li G D, Li X W, Wang L G 2006 Chin. Sci. Bull. 51 1742 (in Chinese) [徐超, 李国栋, 李晓伟, 王利刚 2006 科学通报 51 1742]

    [6]

    Giguère A, Foldeaki M, Ravi Gopal B, Chahine R, Bose T K, Frydman A, Barclay J A 1999 Phys. Rev. Lett. 83 2262

    [7]

    Shen B G, Sun J R, Hu F X, Zhang H W, Cheng Z H 2009 Adv. Mater. 21 4545

    [8]

    Sun J R, Hu F X, Shen B G 2000 Phys. Rev. Lett. 85 4191

    [9]

    Pecharsky V K, Gschneidner Jr K A, Pecharsky A O, Tishin A M 2001 Phys. Rev. B 64 144406

    [10]

    Di N L, Cheng Z H, Li Q A, Wang G J, Kou Z Q, Ma X, Luo Z, Hu F X, Shen B G 2004 Phys. Rev. B 69 224411

    [11]

    Zhang H W, Wang F, Zhao T Y 2004 Phys. Rev. B 70 212402

    [12]

    Chen X, ChenY G, Tang Y B 2011 J. Alloy.Compd. 509 8534

    [13]

    Pecharsky A O, Gschneidner Jr K A, Pecharsky V K 2003 J. Appl. Phys. 93 4722

    [14]

    Tegus O, Bruck E, Buschow K H J, Deboer F R 2002 Nature. 415 150

    [15]

    Liu G J, Sun J R, Shen J, Gao B, Zhang H W, Hu F X, Shen B G 2007 Appl. Phys. Lett. 90 032507

    [16]

    Shen J, Li Y X, Sun J R, Shen B G 2009 Chin. Phys. B 18 2058

    [17]

    Shen J, Li Y X, Hu F X Sun J R 2009 J. Appl. Phys. 105 07A901

    [18]

    Wood M E, Potter W H 1985 Cryogenics 25 667

    [19]

    Gschneidner Jr K A, Pecharsky V K, Pecharsky A O, Zimm C B 1999 Mater. Sci. Forum. 69 315

  • [1]

    Debye P 1926 Ann. Phys. 81 1154

    [2]

    Giauque W F 1927 J.Am.Chem Soc. 49 1864

    [3]

    Fujieda S, Fujita A 2007 J. Appl. Phys. 102 023907

    [4]

    Jiang S T, Li W 2006 Condensed Matter Magnetic Physics (Beijing: Science Press) p54 (in Chinese) [姜寿亭, 李卫 2006 凝聚态磁性物理 (北京: 科学出版社) 第54页]

    [5]

    Xu C, Li G D, Li X W, Wang L G 2006 Chin. Sci. Bull. 51 1742 (in Chinese) [徐超, 李国栋, 李晓伟, 王利刚 2006 科学通报 51 1742]

    [6]

    Giguère A, Foldeaki M, Ravi Gopal B, Chahine R, Bose T K, Frydman A, Barclay J A 1999 Phys. Rev. Lett. 83 2262

    [7]

    Shen B G, Sun J R, Hu F X, Zhang H W, Cheng Z H 2009 Adv. Mater. 21 4545

    [8]

    Sun J R, Hu F X, Shen B G 2000 Phys. Rev. Lett. 85 4191

    [9]

    Pecharsky V K, Gschneidner Jr K A, Pecharsky A O, Tishin A M 2001 Phys. Rev. B 64 144406

    [10]

    Di N L, Cheng Z H, Li Q A, Wang G J, Kou Z Q, Ma X, Luo Z, Hu F X, Shen B G 2004 Phys. Rev. B 69 224411

    [11]

    Zhang H W, Wang F, Zhao T Y 2004 Phys. Rev. B 70 212402

    [12]

    Chen X, ChenY G, Tang Y B 2011 J. Alloy.Compd. 509 8534

    [13]

    Pecharsky A O, Gschneidner Jr K A, Pecharsky V K 2003 J. Appl. Phys. 93 4722

    [14]

    Tegus O, Bruck E, Buschow K H J, Deboer F R 2002 Nature. 415 150

    [15]

    Liu G J, Sun J R, Shen J, Gao B, Zhang H W, Hu F X, Shen B G 2007 Appl. Phys. Lett. 90 032507

    [16]

    Shen J, Li Y X, Sun J R, Shen B G 2009 Chin. Phys. B 18 2058

    [17]

    Shen J, Li Y X, Hu F X Sun J R 2009 J. Appl. Phys. 105 07A901

    [18]

    Wood M E, Potter W H 1985 Cryogenics 25 667

    [19]

    Gschneidner Jr K A, Pecharsky V K, Pecharsky A O, Zimm C B 1999 Mater. Sci. Forum. 69 315

  • [1] 彭嘉欣, 唐本镇, 陈棋鑫, 李冬梅, 郭小龙, 夏雷, 余鹏. 非晶态Gd45Ni30Al15Co10合金的制备与磁热性能. 物理学报, 2022, 71(2): 026102. doi: 10.7498/aps.70.20211530
    [2] 郝志红, 王海英, 张荃, 莫兆军. Eu0.9M0.1TiO3(M=Ca,Sr,Ba,La,Ce,Sm)的磁性和磁热效应. 物理学报, 2018, 67(24): 247502. doi: 10.7498/aps.67.20181750
    [3] 张虎, 邢成芬, 龙克文, 肖亚宁, 陶坤, 王利晨, 龙毅. 一级磁结构相变材料Mn0.6Fe0.4NiSi0.5Ge0.5和Ni50Mn34Co2Sn14的磁热效应与磁场的线性相关性. 物理学报, 2018, 67(20): 207501. doi: 10.7498/aps.67.20180927
    [4] 孙晓东, 徐宝, 吴鸿业, 曹凤泽, 赵建军, 鲁毅. Tb掺杂双层锰氧化物La4/3Sr5/3Mn2O7的磁熵变和电输运性质. 物理学报, 2017, 66(15): 157501. doi: 10.7498/aps.66.157501
    [5] 郑新奇, 沈俊, 胡凤霞, 孙继荣, 沈保根. 磁热效应材料的研究进展. 物理学报, 2016, 65(21): 217502. doi: 10.7498/aps.65.217502
    [6] 董雪, 张国营, 夏往所, 黄逸佳, 胡风. Dy3Al5O12磁热性质研究. 物理学报, 2015, 64(17): 177502. doi: 10.7498/aps.64.177502
    [7] 刘忠深, 特古斯, 欧志强, 范文迪, 宋志强, 哈斯朝鲁, 伟伟, 韩睿. 在永磁体强磁场中Mn1.2Fe0.8P1-xSix系列化合物热磁发电研究. 物理学报, 2015, 64(4): 047103. doi: 10.7498/aps.64.047103
    [8] 张登魁, 赵金良, 张红国, 岳明. LaFe11.5Si1.5化合物氢化特性及稳定性的研究. 物理学报, 2014, 63(19): 197501. doi: 10.7498/aps.63.197501
    [9] 黄逸佳, 张国营, 胡风, 夏往所, 刘海顺. PrNi2的磁和磁热性能研究. 物理学报, 2014, 63(22): 227501. doi: 10.7498/aps.63.227501
    [10] Tatartchenko Vitali, 刘一凡, 吴勇, 周健杰, 孙大伟, 袁军, 朱枝勇, Smirnov Pavel, Rusanov Artem, 牛沈军, 李东振, 宗志远, 陈晓飞. 一级相变时的红外特征辐射–熔融结晶和蒸气冷凝或沉淀. 物理学报, 2013, 62(7): 079203. doi: 10.7498/aps.62.079203
    [11] 王奔, 念敬妍, 铁璐, 张亚斌, 郭志光. 稳定超疏水性表面的理论进展. 物理学报, 2013, 62(14): 146801. doi: 10.7498/aps.62.146801
    [12] 毕力格, 特古斯, 伊日勒图, 石海荣. 一级相变材料Mn1.2Fe0.8P0.4Si0.6的热磁发电性能. 物理学报, 2012, 61(7): 077103. doi: 10.7498/aps.61.077103
    [13] 蔡培阳, 冯尚申, 陈卫平, 薛双喜, 李志刚, 周英, 王海波, 王古平. Ni47Mn32Ga21多晶合金的磁熵变和磁感生应变. 物理学报, 2011, 60(10): 107501. doi: 10.7498/aps.60.107501
    [14] 吴志强, 张振华, 郝颖. 双线性双滞后环系统的约束分岔. 物理学报, 2011, 60(12): 120503. doi: 10.7498/aps.60.120503
    [15] 郑桂波, 金宁德. 两相流流型多尺度熵及动力学特性分析. 物理学报, 2009, 58(7): 4485-4492. doi: 10.7498/aps.58.4485
    [16] 沈 俊, 李养贤, 胡凤霞, 王光军, 张绍英. Ce2Fe16Al化合物在居里温度附近的磁性和磁熵变. 物理学报, 2003, 52(5): 1250-1254. doi: 10.7498/aps.52.1250
    [17] 王文洪, 柳祝红, 陈京兰, 吴光恒, 梁婷, 徐惠彬, 蔡伟, 郑玉峰, 赵连城. 铁磁形状记忆合金Ni52.5Mn23.5Ga24马氏体相变热滞后的研究. 物理学报, 2002, 51(3): 635-639. doi: 10.7498/aps.51.635
    [18] 刘军民, 张进修. 关于热诱导一级相变过程的非平衡态理论. 物理学报, 1997, 46(2): 345-352. doi: 10.7498/aps.46.345
    [19] 宋岩, 丁鄂江, 黄祖洽. 混合流体浸润相变的研究(Ⅰ)——二元系统的两相共存态. 物理学报, 1991, 40(9): 1492-1500. doi: 10.7498/aps.40.1492
    [20] 漆安慎. Schl?gl一级相变模型的核化问题. 物理学报, 1985, 34(9): 1178-1184. doi: 10.7498/aps.34.1178
计量
  • 文章访问数:  4179
  • PDF下载量:  1284
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-02-16
  • 修回日期:  2014-03-28
  • 刊出日期:  2014-07-05

一级相变磁制冷材料的基础问题探究

  • 1. 内江师范学院工程技术学院, 内江 641112;
  • 2. 四川大学材料科学与工程学院, 成都 610065
    基金项目: 国家自然科学基金(批准号:51176050)和四川省教育厅科研项目(批准号:12ZB073,12ZA083)资助的课题.

摘要: 由于一级相变磁制冷材料发生磁相变时有晶胞体积的突变,相变过程中有相变潜热存在,其磁化过程中有许多磁学问题有待于进一步探究. 本文以LaFe13-xSix合金为研究对象,在现有对磁一级相变基础问题的分析基础上,对一级相变材料中系统熵变、等温熵变、绝热温变、热滞、磁滞、铁磁与顺磁态两相共存的温度区间和磁场区间、制冷能力的计算等磁学基础问题进行了较为细致的探究. 分析表明,在忽略完全铁磁态和顺磁态对磁热效应的贡献时,Maxwell 方程和Clausius-Clapeyron 方程计算熵变的值具有等效性. 等温磁化过程中升温和降温曲线包围的面积SABCE(磁滞的大小),实际上是升温过程和降温过程中磁场做的净功,等于相变潜热之差. 磁滞和热滞的大小与磁化过程数据测量的时间有关,测量时间越长则滞后越小,当相变是平衡相变则滞后为零. 另外,对温度和磁场诱导磁相变过程进行了分析,提出了一级相变磁制冷材料制冷能力的不同计算模型. 本文对一级相变磁制冷材料的磁学基础问题研究有一定的参考价值.

English Abstract

参考文献 (19)

目录

    /

    返回文章
    返回