搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

半导体温差发电过程的模型分析与数值仿真

王长宏 林涛 曾志环

引用本文:
Citation:

半导体温差发电过程的模型分析与数值仿真

王长宏, 林涛, 曾志环

Analysis and simulation of semiconductor thermoelectric power generation process

Wang Chang-Hong, Lin Tao, Zeng Zhi-Huan
PDF
导出引用
  • 本文提出一种新型的半导体温差发电模型,在温差发电过程的数值模拟中考虑了热电单元之间封闭腔体内空气传热的影响.同时进一步运用有限元的数值计算方法对不同电臂对数和不同型号温差发电模型的温度场、电压场进行了数值仿真计算,并对仿真结果进行分析.结果表明:采用127对热电单元模型计算的能量转换效率随冷热端温差增大而迅速提高,与采用1对热电单元模型计算的能量转换效率之差从冷热端温差为20℃的0.39%提高到冷热端温差为220℃时的5.16%,能量转换效率比1对热电单元平均高出3.02%. 冷端温度恒定在30℃时,温差发电芯片的输出电压、功率以及能量转换效率均随着电偶臂的横截面积的增大而提高,且电偶臂冷热两端的温差越大提高幅度也越大,而温差发电芯片内阻则与电偶臂横截面积成反比关系,当温差为220℃时对应的输出功率最高达28.9 W.
    This paper presents an improved model of thermoelectric power generation, taking into consideration the effect of air heat transfer in a closed cavity between the thermoelectric couples. We have used the ANSYS software, under the condition of different numbers of thermoelectric couples and different models, to simulate numerically and analyze the temperature field and, the voltage field of thermoelectric power generation. Results show that the energy conversion efficiency of 127 pairs of thermoelectric couples increases rapidly as the temperature gradient between the hot and cold ends increases as compared with 1 pair of thermoelectric units; it is enhanced from 0.39% to 5.16% at an average of 3.02% while the temperature gradient varies from 20℃ to 220℃. The output voltage of the chip, power, and energy conversion efficiency would increase as the cross-sectional area increases while the cold junction temperature stays at 305℃, and the cold arm galvanic greater the temperature difference across the greater the increase rate, and thermoelectric power generation chip resistance, along with the cross-sectional area of the galvanic arm decreases. The output power can be up to 28.9W as the temperature difference is 220℃.
    • 基金项目: 国家自然科学基金青年科学基金(NO.51306040)资助的课题.
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 51306040).
    [1]

    Riffat S B, X L Ma 2003 Appl. Therm. Eng. 23 913

    [2]

    Bejan A 2006 Advanced Engineering Thermodynamics 1 pp710

    [3]

    Liu H L, Shi X, Xu F F, Zhang L L, Zhang W Q, Chen L D, Li Q, Ctirad Uher, Tristan Day G. Jeffrey Snyder 2012 Nature Materials 11 422

    [4]

    Deng Sh K, Tang X F, Tang R Sh 2009 Chin. Phys. B 18 3084

    [5]

    Yu Zh, Guo Y, Zheng J, Ch F 2013 Chin. Phys. B 22 117303

    [6]

    Zhang Y Q, Shi Y, Pu L, Zhang R, Zheng Y D 2008 Acta. Phy. Sin. 57 5198(in Chinese) [张轶群, 施 毅, 濮 林, 张 荣, 郑有炓 2008 物理学报 57 5198]

    [7]

    Min G, Rowe D M 1992 J. Power Sources 38 253

    [8]

    Rowe D M, Min G 1998 J. Power Sources 73 193

    [9]

    Rowe D M 1981 Appl. Energ. 8 269

    [10]

    Rowe D M 1991 Appl. Energ. 40 241

    [11]

    Miguel Fisac, Francesc X. Villasevil, Antonio M. López 2014 J. Power Sources 252 264

    [12]

    Wang C H, Lin T, Lin M B, Zhong D L 2011 Journal of Guangdong University of Technology 2 47(in Chinese) [王长宏, 林涛, 林明标, 钟达亮 2011 广东工业大学学报 2 47]

    [13]

    Liu L, Zhang S L, Ma Y K, Wu G H, Zheng Sh K, Wang Y Q 2013 Acta Phys. Sin. 62 038802(in Chinese) [刘磊, 张锁良, 马亚坤, 吴国浩, 郑树凯, 王永青 2013 物理学报 62 038802]

    [14]

    Chen J, Yan Z, Wu L 1996 J. Applied Phy. 79 8823

    [15]

    Xuan X C, Ng K C, Yap C, Chua H T 2002 INT Journal Heat Mass Transfer 45 5159

    [16]

    Karri M A, Thacher E F, Helenbrook B T 2011 Energy Convers Manage 52 1596

    [17]

    O’ Shaughnessy S M, Deasy M J, Kinsella C E, Doyle J V, Robinson A J 2013 Appl. Energ. 102 374

    [18]

    Shiho Kim 2013 Appl Energ 102 1458

    [19]

    Gaowei Liang, Jiemin Zhou 2011 Appl. Energ. 88 5193

    [20]

    Wei Jieting, Xiong Linchang, Wang Hao 2012 Energy Procedia 17 1570

    [21]

    Rezania A, Rosendahl a L A, Yin H 2014 J. Power Sources 255 151

    [22]

    He Wei, Su Y h 2011 Appl. Energ. 88 5083

    [23]

    Qu, Li M D, Le W, Lin Q 2005 Gryogenics 144 20 (in Chinese) [屈健, 李茂德, 乐伟, 林泉 2005 低温工程 144 20]

    [24]

    Dr. Terry Hendricks 2006 Engineering Scoping Study of Thermoelectric Generator Systems for Industrial Waste Heat Recovery Pacific Northwest National Laboratory William T. Choate BCS, Incorporated [chapter1]

  • [1]

    Riffat S B, X L Ma 2003 Appl. Therm. Eng. 23 913

    [2]

    Bejan A 2006 Advanced Engineering Thermodynamics 1 pp710

    [3]

    Liu H L, Shi X, Xu F F, Zhang L L, Zhang W Q, Chen L D, Li Q, Ctirad Uher, Tristan Day G. Jeffrey Snyder 2012 Nature Materials 11 422

    [4]

    Deng Sh K, Tang X F, Tang R Sh 2009 Chin. Phys. B 18 3084

    [5]

    Yu Zh, Guo Y, Zheng J, Ch F 2013 Chin. Phys. B 22 117303

    [6]

    Zhang Y Q, Shi Y, Pu L, Zhang R, Zheng Y D 2008 Acta. Phy. Sin. 57 5198(in Chinese) [张轶群, 施 毅, 濮 林, 张 荣, 郑有炓 2008 物理学报 57 5198]

    [7]

    Min G, Rowe D M 1992 J. Power Sources 38 253

    [8]

    Rowe D M, Min G 1998 J. Power Sources 73 193

    [9]

    Rowe D M 1981 Appl. Energ. 8 269

    [10]

    Rowe D M 1991 Appl. Energ. 40 241

    [11]

    Miguel Fisac, Francesc X. Villasevil, Antonio M. López 2014 J. Power Sources 252 264

    [12]

    Wang C H, Lin T, Lin M B, Zhong D L 2011 Journal of Guangdong University of Technology 2 47(in Chinese) [王长宏, 林涛, 林明标, 钟达亮 2011 广东工业大学学报 2 47]

    [13]

    Liu L, Zhang S L, Ma Y K, Wu G H, Zheng Sh K, Wang Y Q 2013 Acta Phys. Sin. 62 038802(in Chinese) [刘磊, 张锁良, 马亚坤, 吴国浩, 郑树凯, 王永青 2013 物理学报 62 038802]

    [14]

    Chen J, Yan Z, Wu L 1996 J. Applied Phy. 79 8823

    [15]

    Xuan X C, Ng K C, Yap C, Chua H T 2002 INT Journal Heat Mass Transfer 45 5159

    [16]

    Karri M A, Thacher E F, Helenbrook B T 2011 Energy Convers Manage 52 1596

    [17]

    O’ Shaughnessy S M, Deasy M J, Kinsella C E, Doyle J V, Robinson A J 2013 Appl. Energ. 102 374

    [18]

    Shiho Kim 2013 Appl Energ 102 1458

    [19]

    Gaowei Liang, Jiemin Zhou 2011 Appl. Energ. 88 5193

    [20]

    Wei Jieting, Xiong Linchang, Wang Hao 2012 Energy Procedia 17 1570

    [21]

    Rezania A, Rosendahl a L A, Yin H 2014 J. Power Sources 255 151

    [22]

    He Wei, Su Y h 2011 Appl. Energ. 88 5083

    [23]

    Qu, Li M D, Le W, Lin Q 2005 Gryogenics 144 20 (in Chinese) [屈健, 李茂德, 乐伟, 林泉 2005 低温工程 144 20]

    [24]

    Dr. Terry Hendricks 2006 Engineering Scoping Study of Thermoelectric Generator Systems for Industrial Waste Heat Recovery Pacific Northwest National Laboratory William T. Choate BCS, Incorporated [chapter1]

  • [1] 陈浩, 王存海, 程子明, 魏琳扬, 王富强, 张欣欣. 基于辐射制冷-温室效应的热电系统性能分析. 物理学报, 2021, 70(21): 214401. doi: 10.7498/aps.70.20210356
    [2] 程秋虎, 王石语, 过振, 蔡德芳, 李兵斌. 超高斯光束抽运调Q固体激光器仿真模型研究. 物理学报, 2017, 66(18): 180204. doi: 10.7498/aps.66.180204
    [3] 张孔, 白建东, 何军, 王军民. 激光线宽对单次通过PPMgO:LN晶体倍频效率的影响. 物理学报, 2016, 65(7): 074207. doi: 10.7498/aps.65.074207
    [4] 刘勇波, 菅永军. 具有聚电解质层圆柱形纳米通道中的电动能量转换效率. 物理学报, 2016, 65(8): 084704. doi: 10.7498/aps.65.084704
    [5] 许强强, 季旭, 李明, 刘佳星, 李海丽. 菲涅耳聚光下半导体温差发电组件性能研究. 物理学报, 2016, 65(23): 237201. doi: 10.7498/aps.65.237201
    [6] 邱流潮. 基于不可压缩光滑粒子动力学的黏性液滴变形过程仿真. 物理学报, 2013, 62(12): 124702. doi: 10.7498/aps.62.124702
    [7] 刘磊, 张锁良, 马亚坤, 吴国浩, 郑树凯, 王永青. 平板集热太阳热电器件建模及结构优化. 物理学报, 2013, 62(3): 038802. doi: 10.7498/aps.62.038802
    [8] 张华, 吴建军, 张代贤, 张锐, 何振. 用于脉冲等离子体推力器烧蚀过程仿真的新型机电模型. 物理学报, 2013, 62(21): 210202. doi: 10.7498/aps.62.210202
    [9] 谢子健, 胡作启, 王宇辉, 赵旭. 相变存储单元RESET多值存储过程的数值仿真研究. 物理学报, 2012, 61(10): 100201. doi: 10.7498/aps.61.100201
    [10] 王发强, 马西奎. 电感电流连续模式下Boost变换器的分数阶建模与仿真分析. 物理学报, 2011, 60(7): 070506. doi: 10.7498/aps.60.070506
    [11] 曹卫军, 成春芝, 周效信. 原子在双色组合场中产生高次谐波的转换效率与激光波长的关系. 物理学报, 2011, 60(5): 054210. doi: 10.7498/aps.60.054210
    [12] 方昕, 沈文忠. 多晶硅中的氧碳行为及其对太阳电池转换效率的影响. 物理学报, 2011, 60(8): 088801. doi: 10.7498/aps.60.088801
    [13] 孙棣华, 田川. 考虑驾驶员预估效应的交通流格子模型与数值仿真. 物理学报, 2011, 60(6): 068901. doi: 10.7498/aps.60.068901
    [14] 刘永生, 谷民安, 杨晶晶, 石奇光, 高湉, 杨金焕, 杨正龙. 太阳能光伏-温差发电驱动的新型冰箱模型设计与热力学分析. 物理学报, 2010, 59(10): 7368-7373. doi: 10.7498/aps.59.7368
    [15] 乔晓华, 包伯成. 三维四翼广义增广Lü系统. 物理学报, 2009, 58(12): 8152-8159. doi: 10.7498/aps.58.8152
    [16] 周城, 高艳侠, 王培吉, 张仲, 李萍. 负折射率材料中二次谐波转换效率的理论分析. 物理学报, 2009, 58(2): 914-918. doi: 10.7498/aps.58.914
    [17] 蔡 懿, 王文涛, 杨 明, 刘建胜, 陆培祥, 李儒新, 徐至展. 基于强激光辐照固体锡靶产生极紫外光源的实验研究. 物理学报, 2008, 57(8): 5100-5104. doi: 10.7498/aps.57.5100
    [18] 胡大伟, 王正平, 张怀金, 许心光, 王继扬, 邵宗书. YbVO4晶体的受激拉曼散射. 物理学报, 2008, 57(3): 1714-1718. doi: 10.7498/aps.57.1714
    [19] 田 赫, 掌蕴东, 王 号, 邱 巍, 王 楠, 袁 萍. 光脉冲在微环耦合谐振光波导中传输线性特性的数值仿真. 物理学报, 2008, 57(11): 7012-7016. doi: 10.7498/aps.57.7012
    [20] 宋慧瑾, 郑家贵, 冯良桓, 蔡 伟, 蔡亚萍, 张静全, 李 卫, 黎 兵, 武莉莉, 雷 智, 鄢 强. CdTe太阳电池的不同背电极和背接触层的特性研究. 物理学报, 2007, 56(3): 1655-1661. doi: 10.7498/aps.56.1655
计量
  • 文章访问数:  3740
  • PDF下载量:  16028
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-04-22
  • 修回日期:  2014-05-28
  • 刊出日期:  2014-10-05

半导体温差发电过程的模型分析与数值仿真

  • 1. 广东工业大学材料与能源学院, 广州 510006;
  • 2. 国电中山燃气发电有限公司, 中山 528437
    基金项目: 国家自然科学基金青年科学基金(NO.51306040)资助的课题.

摘要: 本文提出一种新型的半导体温差发电模型,在温差发电过程的数值模拟中考虑了热电单元之间封闭腔体内空气传热的影响.同时进一步运用有限元的数值计算方法对不同电臂对数和不同型号温差发电模型的温度场、电压场进行了数值仿真计算,并对仿真结果进行分析.结果表明:采用127对热电单元模型计算的能量转换效率随冷热端温差增大而迅速提高,与采用1对热电单元模型计算的能量转换效率之差从冷热端温差为20℃的0.39%提高到冷热端温差为220℃时的5.16%,能量转换效率比1对热电单元平均高出3.02%. 冷端温度恒定在30℃时,温差发电芯片的输出电压、功率以及能量转换效率均随着电偶臂的横截面积的增大而提高,且电偶臂冷热两端的温差越大提高幅度也越大,而温差发电芯片内阻则与电偶臂横截面积成反比关系,当温差为220℃时对应的输出功率最高达28.9 W.

English Abstract

参考文献 (24)

目录

    /

    返回文章
    返回